

University of Ljubiliana Faculty of Electrical Engineering Department of Measurements and Robotics

CCT WG-CMC Meeting

Jovan Bojkovski

Sevres, BIPM 16 – 17 May 2024

results of K9 and its influence to accepted and future CMCs

2) Review protocol amendments – changes

Decrease of number of categories (thermocouples only one

category) and number of CMCs (use equations, matrices, ...)

Changes as a result of K9

3) Inter-RMO review process harmonization – difficulties and delays in CMC review process in the years

Which comparisons cover which calibration services

4) Any other business

New members

Members:

Jovan Bojkovski, Efrem Ejigu (AFRIMET), Hisashi Abe replaced by Inseok Yang (APMP), **Sergey Kondratiev (COOMET), Mohamed Sadli (EURAMET)**, Nasser Dawood (GULFMET) and Ciro Sanchez (SIM)

to establish and maintain lists of service categories and, where necessary, rules for the preparation of CMC entries;

to agree on detailed technical review criteria;

to coordinate and, where possible, conduct inter-regional reviews of CMCs submitted by RMOs for posting in Appendix C of the CIPM MRA;

to provide guidance on the range of CMCs supported by particular key comparisons;

to examine the sufficiency of existing comparisons for supporting CMC submissions and to recommend new comparisons where deemed necessary; and

to coordinate the review of existing CMCs in the context of new results of key and supplementary comparisons.

The CCT-WG-CMC is tasked to draft and update CMC review protocols, to review fast-track submissions for inclusion in the KCDB Appendix C, and to identify new comparisons needed to support CMC submissions.

Figure 5.6: Deviation of ΔT_{NMI} from $\overline{\Delta T}$ at the argon point measured by each NMI. Error bars represent uncertainty calculated using the uncertainty budget supplied by the NMI for this key comparison, at the k = 2 level.

Figure 5.5: Deviation of ΔT_{NMI} from $\overline{\Delta T}$ at the mercury point measured by each NMI. Error bars represent uncertainty calculated using the uncertainty budget supplied by the NMI for this key comparison, at the k = 2 level.

Figure 5.4: Deviation of ΔT_{NMI} from ΔT at the gallium point measured by each NMI. Error bars represent uncertainty calculated using the uncertainty budget supplied by the NMI for this key comparison, at the k = 2 level.

Figure 5.3: Deviation of ΔT_{NMI} from $\overline{\Delta T}$ at the indium point measured by each NMI. Error bars represent uncertainty calculated using the uncertainty budget supplied by the NMI for this key comparison, at the k = 2 level.

Figure 5.2: Deviation of ΔT_{NMI} from $\overline{\Delta T}$ at the tin point measured by each NMI. Error bars represent uncertainty calculated using the uncertainty budget supplied by the NMI for this key comparison, at the k = 2 level.

Figure 5.1: Deviation of ΔT_{NMI} from $\overline{\Delta T}$ at the zinc point measured by each NMI. Error bars represent uncertainty calculated using the uncertainty budget supplied by the NMI for this key comparison, at the k = 2 level.

NMI	CCT K9 result ΔT _{NMI} –KCRV	Unc k=2	KCDB CMC
	mK	mK	mK
INMETRO	-0.69	1.37	
INRIM	-0.61	0.91	0.84
INTI	-1.56	3.37	
KRISS	0.61	0.99	1.3
LNE-CNAM	1.01	0.96	1.1
NIM	0.13	0.74	1.4
NIST	0.02	0.61	0.37
NMIA	-1.07	0.64	0.5
NMIJ/AIST	0.19	0.78	2.00
NPL	-1.78	0.64	0.90
NRC	0.30	0.75	0.6
РТВ	1.69	1.23	1.3
VSL	2.53	1.04	0.9

Review protocol amendments – changes

ITS-90 Subrange Review Protocol – revised by Jovan Bojkovski

TPW CMC Review protocol potential error – identified by Inseok Yang

Which comparisons cover which calibration services

The BIPM key comparison database

CLASSIFICATION OF SERVICES IN THERMOMETRY

Version 1.3, January 2022

METROLOGY AREA: THERMOMETRY

BRANCH: TEMPERATURE

7. Temperature – Items used for disseminating thermodynamic temperature

7.1 Radiation thermometry

- 7.1.1 Fixed-point blackbody cells and apparatus
- 7.1.2 Radiation thermometers
- 7.1.3 Variable temperature blackbody radiation sources

1. Temperature – Items used for defining ITS-90

1.1 Primary fixed-point cells

- 1.1.1 Cells for contact thermometry
- 1.1.2 Cells for radiation thermometry

Introduction

- The NMI submitting a CMC must take part in a comparison
- The comparison protocol and report are reviewed by experts in the field and may require several iterations before approval
- The NMI drafts its CMC and submits it to its RMO
- The CMC is reviewed by the RMO experts and this may require several iterations before approval
- When required, the CMC is reviewed also by the other RMOs (Inter-RMO review) and this may also require several iterations before approval
- The comparison is published in the BIPM database

Revison of the CIPM MRA implementation

- Why ?
 - The increased demand of resources and the time required for bringing comparisons to conclusion
 - Many signatories continuously expand the number of declared capabilities
 - Staff changes and new techniques appear, the validity of a comparison is limited in time and its ability to underpin CMC expires

CCT KC in contact thermometry

KC	Measurements	Year of publication of report
CCT-K1	1997 to 2001	2006
CCT-K2	1997 to 2001	2001
ССТ-КЗ	1997 to 2001	2003
ССТ-К4	1998 to 2000	2002
ССТ-К7	2002 to 2004	2006
ССТ-К9	2011 to 2015	2023
ССТ-К7.2021	2021 to 2022	2023

Important questions

- "How far the light shines ?"
 - It is impossible to perfom comparisons for every CMC entry
 - Does the comparison in range of SPRT at fixed points also covers CMC for PRT by comparison ?
- When do we have to repeat comparison
 ?

Revison of the CIPM MRA implementation

- How the CCT new suggestion how to further reduce workload
 - taking a broader view of the impact of the comparisons, while preserving the scientific objectiveness of the process
 - an example of in the fields of contact thermometry and hygrometry

кс	Range	Device calibrated in the KC	Calibration services tested by the KC in the range
ССТ-К1	0.65 K to 24.5561 K	Rhodium-Iron resistance thermometers (2.2.1)	Calibration of e-H and Ne fixed point cells (1.1.1) Calibration of complete apparatus realizing fixed points for CSPRTs (1.2.1) Calibration of Rhodium-Iron resistance thermometers at fixed points (2.2.1)
ССТ-К2	13.8 K to 273.16 K	Capsule-type SPRTs (1.3.1)-	Calibration of fixed point cells for CSPRTs (1.1.1) Calibration of CSPRTs at fixed points (1.3.1) Calibration of complete apparatus realizing fixed points for CSPRTs (1.2.1)
ССТ-КЗ	83.8058 K to 660.323 °C	Long-stem SPRTs (1.3.2)	Calibration of fixed point cells for LSPRTs (1.1.1) Calibration of fixed point cells for LSPRTs (1.1.1) Calibration of complete apparatus realizing fixed points for LSPRTs (1.2.1)
ССТ-К4	660.323 °C to 961.78 °C	Long-stem SPRTs (1.3.2)	Calibration of fixed point cells for LSPRTs (1.1.1) Calibration of LSPRTs at fixed points (1.3.1) Calibration of complete apparatus realizing fixed points for LSPRTs (1.2.1)
ССТ-К7	273.16 К	Triple point of water cell (1.1.1)	Calibration of fixed point cells for LSPRTs (1.1.1) Calibration of LSPRTs at fixed points (1.3.1)

LABORA	KC TORIJ	Range	Other calibration services underpinned by the KC
ZA MET IN KAK	ССТ-К1	0.65 K to 24.5561 K	Calibration of Rhodium-Iron resistance thermometers by comparison (2.2.1)
	CCT-K2	13.8 K to 273.16 K	Calibration of CSPRTs in the ITS-90 sub-ranges (1.3.1) Calibration of industrial platinum resistance thermometers (2.2.2) Calibration of thermistors and other resistive thermometers (2.2.3) Calibration of noble-, base- and pure-metal thermocouples (2.3.1, 2.3.2, 2.3.3) Calibration of liquid-in-glass thermometers (2.4.1) Calibration of temperature sensors with display unit (2.7.1) Calibration of dry-well block calibrators (2.8.6)
	ССТ-КЗ	83.8058 K to 660.323 °C	Calibration of LSPRTs in the ITS-90 sub-ranges (1.3.1) Calibration of industrial platinum resistance thermometers (2.2.2) Calibration of thermistors and other resistive thermometers (2.2.3) Calibration of noble-, base- and pure-metal thermocouples (2.3.1, 2.3.2, 2.3.3) Calibration of liquid-in-glass thermometers (2.4.1) Calibration of temperature sensors with display unit (2.7.1) Calibration of dry-well block calibrators (2.8.6)
	ССТ-К4	660.323 °C to 961.78 °C	Calibration of LSPRTs in the ITS-90 sub-ranges (1.3.1) Calibration of industrial platinum resistance thermometers (2.2.2) Calibration of thermistors and other resistive thermometers (2.2.3) Calibration of noble-, base- and pure-metal thermocouples (2.3.1, 2.3.2, 2.3.3) Calibration of temperature sensors with display unit (2.7.1) Calibration of dry-well block calibrators (2.8.6)
	ССТ-К7	273.16 K	

кс	Range	Device calibrated in the KC	Calibration services tested by the KC in the range	Other calibration services underpinned by the KC	Other services requiring traceability to other quantities
			Dew-point hygrometers (3.1.1)	Psychrometers (3.2.1)	Relative humidity sensors (3.3.1) → T
K6/K8	-50 °C to 95 °C	Dew-point Hygrometer (3.1.1)	Dew-point generators (4.1.1)	Other hygrometers (3.4.1)	Relative humidity generators (4.2.1) → T
				Reference gases (5.2.1)	Flow mixing (4.3.1) \rightarrow Q
					Salt solutions (5.2.1) \rightarrow T

Other possibilities

- By reducing the number of service categories
 - For example, instead of having CMCs for noble metal, base metal and pure metal thermocouples, only a single service category for thermocouples could be defined, leaving as a remark which type of thermocouples the uncertainty refers to
- This will reduce the workload at a price of a moderate loss in the level of detail with which the BIPM database presents the calibration and measurement capabilities of the NMIs

Discussion

- Currently the KCs are testing only the ITS-90 realization, however, with the redefinition of the kelvin in 2019, we should start reflecting on how the kelvin redefinition will affect the way KCs are performed and the way CMCs are classified
- Will separate KCs need to be performed to test primary realizations?
- Will there need to be different CMCs for two different quantities (thermodynamic temperature, *T*, and international temperature of 1990, *T*₉₀)?

Any other business ?

- Taking into account time frame of the comparisons, CMCs should have additional information:
 - Is the equipment still the same ?
 - If not additional support with report paper, to provide evidence and linkage with original comparison
 - Is the location of the laboratory still the same ?
 - Is the staff still the same ?
- New key comparisons to support CMCs
 - New K4 (Al and Ag), new K9 with fixed point cells, not SPRTs
- How to speed up data processing after the measurements ?
 - Good example CCTK7.2021 (TPW)
 - Not too good example CCTK8 (high temperature dew-point)

Statistics

Statistics

Next meeting October 2025, TEMPMEKO 2025, France Thank you very much