

CCPR WG-SP TG-12 Survey report - TG12 questionnaire 2018 -

Hiroshi Shitomi

National Metrology Institute of Japan (NMIJ, AIST)

History of TG-12

■ 2015 (WG-SP/ Beijing)

- TG12 was established.
- September 2016 (WG-SP/ Sèvres)
 - Action point was given to carry out a survey of activity in NMIs and to identify priorities for future work of the TG.

■ July 2018

- Questionnaire 2018 was distributed to TG12 members by Tatsuya Zama (former TG12 chair).
- September 2019 (WG-SP/ Sèvres)
 - WG-SP agreed to appoint Hiroshi Shitomi as a new TG-12 chair.
- November 2020
 - First draft survey report
- December 2021
 - Follow-up survey
- September 2023 (WG-SP/ Teddington)
 - Survey report was distributed to TG12 members for review.

TG-12 questionnaire 2018

■ Q.1:

What kinds of activity do you have regarding LED sources for photometry?

■ Q.2:

What kind of LED light source is preferable for your purpose?

■ Q.3:

Do/Did you collaborate or do you plan to collaborate with LED manufacturer?

Q.4:

Do/Did you collaborate or do you plan to collaborate with other organization (university, research institute or manufacturer association and so on) except for LED manufacturer?

Answers to the questionnaire (2018)

- (10) NMIs replied to the questionnaire from 2018 to 2021.
- All the collected answers are organized into a list and summarized in the survey report. (20230908-TG12 Survey report.pdf)

H BIPM ABOUT US	COORDINATION LIAISON TECHNIC	CAL/SCIENTIFIC PUBLICATIONS & EVENTS C	2
	CCPR-WG-SP/2023-18 Minutes of Aug 21 TG16 meeting (2023- 9-4) Y. Ohno 05/02/2024	CCPR-WG-SP/2023-19 Report on CCU CCQM Workshop 2023 Counting Quantities S. Kuck 27/09/2023	
	CCPR-WG-SP/2023-20 2023-CIPM-STG-CENV to CCPR WG- Strategy	CCPR-WG-SP/2023-CCPR-WG-SP Minutes of the 2023 CCPR WG-SP Meeting Final	
	E. Woolliams 05/02/2024	Dr Maria.E Nadal 04/04/2024	
\langle	10.20230908-TG12 Survey Report 28/02/2024	>	

Highlighted research topics relevant to CCPR

- Research activity relevant to LED photometry
 - 1. Development of LED-based standard sources for calibration of various types of LEDs
 - 2. Development of LED standard sources as <u>a replacement of</u> <u>traditional tungsten filament-based standard lamps</u>
 - 3. Evaluation of optical properties of LEDs in terms of <u>energy</u> <u>efficiency</u> as well as <u>physiological and photobiological aspect</u>
 - 4. Involvement in a new technology area such as micro-LEDs

Expected properties of LED-based standard sources

- LED-based photometric standard sources
 - 1. <u>Versatility</u> for many applications (e.g. dynamic range, spectrally tunable)
 - 2. <u>Universal specifications</u> for common parts such as an electric connector
 - 3. LED standard sources <u>suitable for photometry</u> (e.g. LED reference spectrum)
 - 4. LED standard sources <u>suitable for spectroradiometry</u> (e.g. spectral flatness)
 - 5. <u>Spectral extension</u> to the outside of visible region (e.g. UV LEDs and IR LEDs)

External collaboration

Collaboration with LED manufactures

- Some LED manufacturers and luminaire manufacturers have close collaboration to NMI(s).
 - 1. cross validation and characterization of sample LEDs
 - 2. joint develop of specially-designed LEDs
 - 3. joint research aiming for standardization (e.g. new LED quality indices)

Collaboration with other stakeholders

- Various type of collaboration frameworks
 - 1. international framework (e.g. IEA 4E SSL Annex, CIE)
 - 2. regional research consortium (e.g. EMPIR)
 - 3. national (domestic) research project with universities and other research institutes

Summary of the questionnaire (2018)

- Many NMIs are highly active in the research about LED photometry and relevant measurement technology to provide the measurement basis.
- Some NMIs are trying to develop standard LED sources to be the best candidate for the replacement of conventional tungsten filament-based standard sources.
- Several types of standard LEDs have developed as a prototype or a regular product as outcomes of research cooperation with industry as well as joint research program etc.

Technical discussions

- LED-based photometry
 - Calibration system suitable for LEDs (e.g. CIE L41)
 - Required performance for LED standard sources as replacement of tungsten filament-based standard sources
 - Iong-term stability
 - Sustainability
 - Spectral properties
 - The best use of LED-based instrumentation for calibration
- Emerging needs
 - Spectral extention from UV to IR
 - LED-based standard source for spectroradiometry
 - UV-C radiometry
 - Non-visual effect
- Metrological consideration
 - Maintenance and update of CMCs
 - Uncertainty evaluation (e.g. correlated of spectral data)

Candidate discussion items for TG12

- 1. Monitoring progress and technical discussion on <u>practical implementation</u> of the LED reference spectrum (L41) for photometer calibration
- Monitoring progress and technical discussion on development of <u>LED-based standard sources as a replacement</u> of traditional standard incandescent lamps
- 3. Future research strategy to address the issue on the <u>replacement of</u> <u>traditional tungsten-based standard sources especially for UV and IR</u> <u>region</u>
- 4. To find out attracting topics for industry that leads to promote intensive collaboration with manufacturers on the use of LEDs in photometry
- 5. Discussion about metrological aspects to supplement the <u>emerging LED-</u> <u>based applications (e.g. UV-C disinfection)</u>
- 6. Discussion about <u>future metrological system</u> in terms of maintenance, update of CMCs, and uncertainty estimation under the situation mainly using LED-based standard sources