CTBTO.ORG

COMPREHENSIVE NUCLEAR-TEST-BAN TREATY ORGANIZATION

Metrology in support of the Comprehensive Nuclear Test-Ban Treaty (CTBT)

Disclaimers:

- The views expressed in this paper are those of the authors and do not necessarily reflect the views of the CTBTO.
- The use of particular designations of countries or territories does not imply any judgement by the Commission as to the legal status of such countries or territories, of their authorities and institutions or of the delimitation of their boundaries.

N. Hermanspahn, CTBTO

- The Treaty
- Treaty Verification
- The International Monitoring System
- Radionuclide monitoring for CTBT
- Gamma spectrometry for aerosol measurements
- Xenon measurements in the IMS
- Summary

The Treaty Article I: Basic Obligations

- 1. Each State Party undertakes not to carry out any nuclear weapon test explosion or any other nuclear explosion, and to prohibit and prevent any such nuclear explosion at any place under its jurisdiction or control.
- 2. Each State Party undertakes, furthermore, to refrain from causing, encouraging, or in any way participating in the carrying out of any nuclear test explosion or any other nuclear explosion.

What is the Comprehensive Nuclear-Test-Ban Treaty (CTBT)?

CTBT0.0RG

CTBT Verification Regime: Elements

International Monitoring System

337 facilities:

- > Seismic
- Hydro-acoustic
- Infrasound
- Radionuclide, Noble gas, Laboratories

GCI & IDC

Consultation and Clarification

Right to clarify matters indicating possible non-compliance On-Site Inspection

Conduct of on-site verification activities

Confidence Building Measures

Large chemical Explosions: Prevent misinterpretations and calibrate seismic IMS component

International Monitoring System

- Primary Seismic Stations (50)
- Auxiliary Seismic Stations (120)
- Infrasound stations (60)
- Hydroacoustic (11)
- Radionuclide (80)
- Noble gas systems (40)
- RN Laboratory (16)

Legend

Verification System Monitoring Technologies

Network >90% complete

Seismic

COMPREHENSIVE

NUCLEAR-TEST-BAN TREATY ORGANIZATION

Listening underground

155/170 certified

Hydroacoustic

Listening under water

11/11 certified

Infrasound

Listening above ground

53/60 certified

Radionuclide

Sniffing for radiation

87/96 facilities certified

- 73/80 RN Particulate **Stations** (26/40 add. Noble Gas Capability cert.)
- 14/16 Radionuclide Laboratories

PUTTING AN END TO NUCLEAR EXPLOSIONS

CTBTO.ORG

GCI and IDC

PUTTING AN END TO NUCLEAR EXPLOSIONS

CTBT0.0RG

PUTTING AN END TO NUCLEAR EXPLOSIONS

Seismic Stations

IMS Seismic Network

- Primary Seismic Stations (50)
- Auxiliary Seismic Stations (120)
- Two types of Seismic Stations:stations with a singleseismometer and arrays withseveral seismometers

Legend			
CERTIFIED	∇	PS	
OPERATIONAL	\triangle	AS	
INSTALLED	1	IS	
UNDER CONSTRUCTION	\circ	HA	
UNDER NEGOTIATION	\diamond	RN	(P)
NOT STARTED		RN	(NG
🕤 HYDRO T-PHASE		RN	LAB
🙈 SEISMIC ARRAY			

PUTTING AN END TO NUCLEAR EXPLOSIONS

Earthquake or Explosion?

- Seismic stations detect signals from both natural and man-made sources
- Seismic signals recorded from (nuclear) explosions are characterized by a predominance of Body Waves

Metrology needs

Hydroacoustic Stations

IMS Hydroacoustic Network

 Six hydrophone based HA stations

COMPREHENSIVE

NUCLEAR-TEST-BAN

TREATY ORGANIZATION

 Five seismometer based T-phase HA stations

PUTTING AN END TO NUCLEAR EXPLOSIONS

CTBTO.ORG

Hydroacoustic Stations

Hydrophone station (up to 100 Hz frequency)

T-phase station (up to 50 Hz frequency)

Detection capability of the HA Hydrophone station network

CTBT0.0RG

3-D hydroacoustic model computations courtesy of K.D. Heaney & R.L. Campbell, Applied Ocean Sciences, Inc. (USA) PUTTING AN END TO NUCLEAR EXPLOSIONS

COMPREHENSIVE NUCLEAR-TEST-BAN TREATY ORGANIZATION HA Hydrophone Station Installation

Installation of HA04 Crozet Islands

@ CTBTO youtube channel: HA04 - CTBTO's last hydroacoustic station One minute trailer https://www.youtube.com/watch?v=Az9460J6h-0

COMPREHENSIVE

NUCLEAR-TEST-BAN TREATY ORGANIZATION

Full length (13 minute video) https://www.youtube.com/watch?v=wKUiNIvOvug

Example of Civil & Scientific Applications TREATY ORGANIZATION

Observing marine mammals – example from HA01 Cape Leeuwin

Blue Whale

COMPREHENSIVE

NUCLEAR-TEST-BAN

Fin Whale

Pygmy Blue Whale

PUTTING AN END TO NUCLEAR EXPLOSIONS

Metrology needs

Infrasound Stations (Arrays)

IMS Infrasound Network

• Infrasound Stations (60)

- UNDER CONSTRUCTION
- NOT STARTED
- 🕤 HYDRO T-DHASE 🗟 SEISMIC ARRAY

PUTTING AN END TO NUCLEAR EXPLOSIONS

CTBT0.0RG

Sources of Infrasound

CTBTO.ORG

Infrasound arrays

- 4-element array for low-wind conditions
- 8-element array for high-wind conditions
- 1 to 3 km aperture

COMPREHENSIVE

NUCLEAR-TEST-BAN TREATY ORGANIZATION

Different environmental conditions

Metrology needs

Radionuclide Stations

PUTTING AN END TO NUCLEAR EXPLOSIONS

The radionuclide technology is the only one that is able to confirm whether an explosion detected and located by the others is indicative of a nuclear test.

Particulates and Noble Gas isotopes:

- Above-ground nuclear explosions release both particulates and noble gas isotopes into the atmosphere.
- Underground nuclear explosions can be "sealed off" from the atmosphere, but Noble Gas isotopes can escape through small cracks in the earth.

- 90% detection probability within 14 days after a 1 kt nuclear explosion anywhere on the globe
- Radionuclide release from a 1 kT nuclear explosion:
- 10¹⁵ 10¹⁶ Bq release for key nuclides (¹⁴⁰Ba, ¹³³Xe)
- Underground nuclear explosion: estimated 0.1 1% release
- IMS should detect a release of ~10¹³ Bq anywhere on the globe
- Based on this, the radionuclide station network has been designed:
- 80 particulate radionuclide stations
- of which 40 have noble gas detection capability
- with sensitivity (detection limits) between 10 to 1000 μ Bq/m3

IMS Radionuclide Network

- Radionuclide (RN) Particulate Stations (80)
- RN Stations with additional Noble Gas monitoring (40)
- Radionuclide Laboratories (16)

PUTTING AN END TO NUCLEAR EXPLOSIONS

CTBTO.ORG

Radionuclide Station RN 09 Darwin (Australia)

RN Particulate

RN Noble Gas

Particulate Radionuclide Station

PUTTING AN END TO NUCLEAR EAF LOSIONS

CTBT0.0RG

Data Acquisition

Sampling & Measurement of Aerosol or Noble Gases:

COMPREHENSIVE

NUCLEAR-TEST-BAN TREATY ORGANIZATION

- Filtering for particulate in Aerosol
- Gas collection for Noble Gas

Data Analysis

Analysis for presence of fission products

Categorization of measurements (natural, anthropogenic)

Source location

Inferring source location with Atmospheric Transport Models (ATM)

192 hour fest valid 00:00Z May 04 198

CTBT0.0RG

Particulate – time sequence

- Air sampling with > 500m³/h
- Decay of short-lived natural radioisotopes
- HPGe gamma spectrometry
- Final spectrum sent <72 h hours from start of sampling

For requirements see: CTBT/WGB/TL-11,17/18/Rev.7 *Operational Manual for Radionuclide Monitoring and the International Exchange of radionuclide Data*.

Activity and concentration

$$A(Bq) = \frac{N}{T\varepsilon\gamma}K_D$$

$$A (Bqm^{-3}) = \frac{N}{T\varepsilon\gamma V\xi} K_D^*$$

- *γ* emission yield: some nuclear data could be improved
- V calibrated flow meter
- ξ collection efficiency = 1 (0).

Concentration – order of magnitude determination of source term

Activity ratios – precise ratios important for classifying event

Aerosol RN Monitoring

Sr-91	9.63	h	Na-24	14.96	h
Y-91	58.51	d	K-42	12.36	h
Y-93	10.18	h	Sc-46	83.79	d
Zr-95	64.02	d	Sc-47	3.349	d
Nb-95	34.98	d	Cr-51	27.7	d
Zr-97	16.91	h	Mn-54	312.1	d
Mo-99	65.94	h	Co-57	271.8	d
Tc-99m	6.01	h	Co-58	70.82	d
Ru-103	39.26	d	Fe-59	44.5	d
Rh-105	35.36	h	Co-60	5.271	у
Ru-106	373.59	d	Zn-65	244.3	d
Ag-111	7.45	d	Zn-69m	13.76	h
Pd-112	21.03	h	Ga-72	14.1	h
Cd-115m	44.6	d	As-74	17.77	d
Cd-115	53.46	h	As-76	1.078	d
Sn-125	9.64	d	Rb-84	32.77	d
Sb-125	2.76	у	Rb-86	18.63	d
Sb-126	12.46	d	Y-88	106.7	d
Sb-127	3.85	d	Zr-89	78.41	h
Sb-128	9.01	h	Rh-102	207	d
Te-129m	33.6	d	Ag-106m	8.28	d
I-130	12.36	h	Ag-108m	418	у
Te-131m	30	h	Ag-110m	249.8	d
I-131	8.02	d	Sb-120	5.76	d
Te-132	3.2	d	Sb-122	2.724	d
I-133	20.8	h	Sb-124	60.2	d
I-135	6.57	h	Cs-132	6.479	d
Cs-136	13.16	d	Ba-133	10.52	У
Cs-137	30.07	у	Cs-134	2.065	У
Ba-140	12.75	d	Eu-152m	9.312	h
La-140	1.678	d	Eu-152	13.54	У
Ce-141	32.5	d	Tm-168	93.1	d
Ce-143	33.04	h	W-187	23.72	h
Ce-144	284.9	d	lr-190	11.78	d
Nd-147	10.98	d	lr-192	73.83	d
Pm-149	53.08	h	Au-196	6.183	d
Pm-151	28.4	h	Au-196m	9.7	h
Sm-153	46.27	h	Au-198	2.695	d
Eu-155	4.761	y .	Pb-203	51.87	h
Sm-156	9.4	h	Ra-224a	3.66	d
Eu-156	15.19	d	U-237	6.75	d
Fu-157	15 18	h	Nn-239	2 357	d

Particulate Radioactivity Monitoring: 92 radionuclides

Nuclide data

COMPREHENSIVE

NUCLEAR-TEST-BAN TREATY ORGANIZATION

Analyte	Method	calibration
Fission products	High resolution gamma spectrometry	Gamma calibration standard in sample geometry
Activation products	High resolution gamma spectrometry	Gamma calibration standard in sample geometry

Challenges:

- sample inhomogeneities, sample geometry
- Nuclide data

NG monitoring

	Pro	Con
Argon	 High neutron activation yield for ³⁷Ar in Calcium rich rock (⁴⁰Ca (n,α)³⁷Ar) Suitable half-life (35 days) Low atmospheric background 	• Difficult to measure at high sensitivity
Krypton		 Moderate fission yield Long half life (10.8 a) High atmospheric background (1.5 Bq/m³)
Xenon	 High fission yields Suitable half-lives: 9.1 hours to 11.8 days Low atmospheric background 	

- At least 90% detection capability within 14 days after a nuclear explosion in the atmosphere, underwater or underground for a 1 kT nuclear explosion
- Nuclides of interest:
- ^{131m}Xe (11.9 d)
- ¹³³Xe (5.243 d)
- ^{133m}Xe (2.19 d)
- ¹³⁵Xe (9.10 h)
- Source Term: range 10¹⁴ to 10¹⁵ Bq ¹³³Xe for a 1 kT nuclear explosion
- Minimum detectable concentration of <1 mBq/m3 for ¹³³Xe
- 40 Noble Gas stations

PUTTING AN END TO NUCLEAR EXPLOSIONS

Basic sampling scheme

NG systems in-use

PUTTING AN END TO NUCLEAR EXPLOSIONS

CTBTO.ORG

Next generation NG systems

PUTTING AN END TO NUCLEAR EXPLOSIONS

Detection systems

PUTTING AN END TO NUCLEAR EXPLOSIONS

CIBIO.OKG

System calibration

- Challenges:
 - Gaseous sources unknown transfer efficiency
 - Short half-lives
- Gamma spectrometry: standard approach with calibration source
- Beta-gamma coincidence systems:
 - High resolution gamma calibration + xenon spikes
 - absolute calibration

Beta-gamma histogram

PUTTING AN END TO NUCLEAR EXPLOSIONS

CTBTO.ORG

Beta-gamma histogram

PUTTING AN END TO NUCLEAR EXPLOSIONS

CTBT0.0RG

- Xe-131m (11.84 d)
 - γ @ 164 keV (yield 1.9%)
 - CE dominant
 - CE 54% with x-ray

- Xe-133 (5.24d)
 - Dominant decay β 360 keV + 80keV g (37%)

- Xe-133m
- 10 % by gamma 233 keV
- 55% CE + x-ray
- Xe-133 spectrum growing in

- Xe-135
- Beta decay 900keV Plus 250keV gamma

Absolute calibration

PUTTING AN END TO NUCLEAR EXPLOSIONS

CTBT0.0RG

$$A (Bq) = \frac{N}{T \varepsilon \gamma} K_D \qquad A (Bqm^{-3}) = \frac{N}{T \varepsilon \gamma V \xi} K_D^*$$

V not measured (not used)

ξ Process efficiency: calculated based on amount of collected xenon and *known* stable xenon concentration in air

$$V\xi = V \cdot \frac{V_{Xe}}{f_{Xe}V} = \frac{V_{Xe}}{f_{Xe}}$$

Volume determination based on single publication

The krypton and xenon contents of atmospheric air Glueckauf and Pitt https://doi.org/10.1098/rspa.1956.0057

Spike QC programme

PUTTING AN END TO NUCLEAR EXPLOSIONS

CTBTO.ORG

PUTTING AN END TO NUCLEAR EXPLOSIONS

CTBTO.ORG

Metrology for Noble Gas Monitoring

Analyte	Method	calibration
Xenon isotopes	High resolution gamma spectrometry (low sensitivity, interferences)	Gamma calibration standard in sample geometry
Xenon isotopes	Beta-gamma coincidence spectrometry	Absolute calibration

Challenges:

- Traceability through gamma spectrometry only
- Limited number of laboratories with xenon measurement capability
- Environmental measurements at mBq level

ORGANIZATION

Metrology for radionuclide monitoring:

Gamma emitting nuclides: calibration – ok.

> Nuclide data – data for some isotopes could be improved

Xe (Xe-131m, Xe-133, Xe-133m, Xe-135) no primary standard
Traceability through gamma spectrometry only
➢New determination of stable xenon in air (nice-to-have)
➢develop (revive) gas measurement capability at NMIs

Thank you!

