Accelerating quantum technologies through measurements & standards

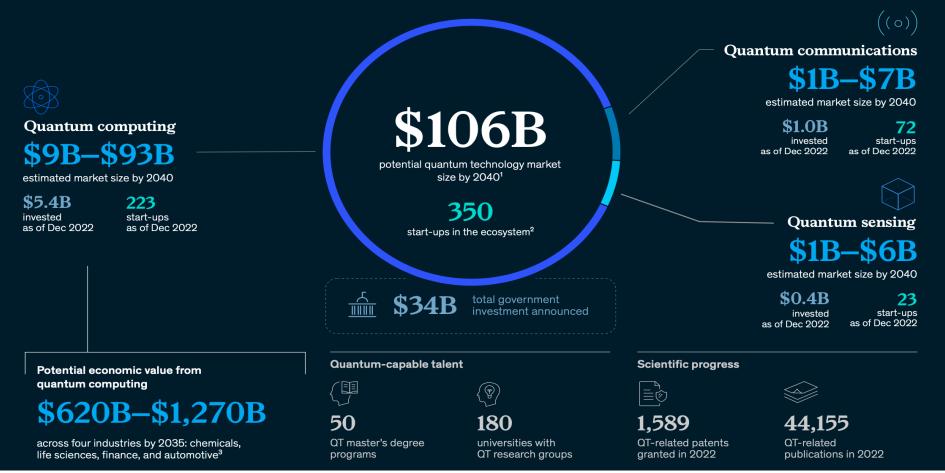
A readout from the BIPM workshop and an introduction to NMI-Q

JT Janssen Chair

NMI-Q Steering Committee: Davide Calonico, Barbara Goldstein, Jan Herrmann, Nobu-Hisa Kaneko, Tim Prior, Nicolas Spethmann, Kevin Thomson

METP

23rd meeting of NMI Directors and Member State Representatives 17-18 October 2024


Bureau

International des

- Poids et

The quantum technology ecosystem in 2023

Summary of Quantum Technology Monitor findings

The Expanding **Role of National** Metrology Institutes in the Quantum Era

Alexander Tzalenchuk, Nicolas Spethmann, Tim Prior, Jay H. Hendricks, Yijie Pan, Vladimir Bubanja, Guilherme P. Temporão, Dai-Hyuk Yu, Damir Ilić and Barbara L. Goldstein

nature physics

International Measurement Confederation, IMEKO

www.nature.com/nphys/July 2022 Vol. 18 No. 7

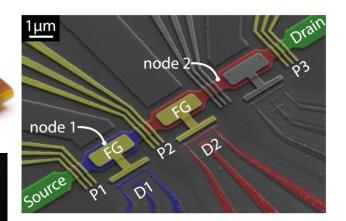
Technical Committee 25 -Quantum Measurement and Quantum Information

Emerging technologies demand innovations in metrology

Agility: to keep up with rapidly changing technical landscape Ability: to make a measurement at all (traceability may lag if needed at all) Comparability: across vendors, quickly, continuously Accelerated delivery: Formal standards may be obsolete by the time they're published

METPO

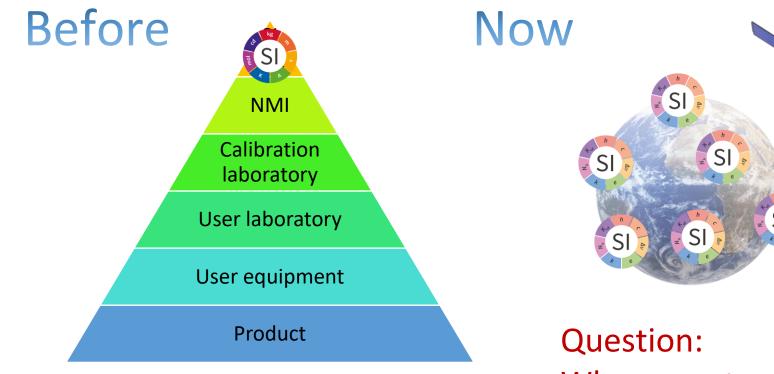
Bureau


International des

- Poids et

NMIs

- first to develop
- first to benefit

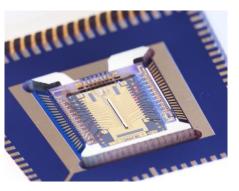


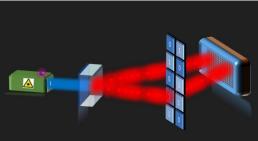
Bureau
International des
Poids et
Mesures

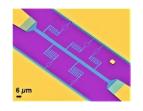
Discoveries and applications in metrology

- Time metrology. Masers and atomic clocks. [**1944** Isidor Isaac Rabi , **1964** Charles H. Townes, Nicolay G. Basov, Aleksandr M. Prokhorov]
- Frequency standards. Ion traps, laser cooling. BEC. [1989 Norman F. Ramsey, Hans G. Dehmelt, Wolfgang Paul, 1997 Steven Chu, Claude Cohen-Tannoudji, William D. Phillips, 2001 Eric A. Cornell, Wolfgang Ketterle, Carl E. Wieman]
- Lasers, interferometry and spectroscopy, frequency combing [1907 Albert Michelson, 2005 - Roy J. Glauber, John L. Hall, Theodor W. Hänsch]
- Dimensional and functional metrology on the nano-scale. Scanning probe microscopy [1986 Ernst Ruska, Gerd Binnig, Heinrich Rohrer]
- The Josephson effect and the volt [1973 Leo Esaki, Ivar Giaever, Brian D. Josephson]
- Quantum Hall effect and the ohm [1985 Klaus von Klitzing]
- Graphene [with the first application in resistance standard 2010 Andre Geim & Konstantin Novoselov]
- Quantum control and clocks [2012 Serge Haroche & David Wineland]


Democratised traceability




Who owns traceability?



What does industry need from us to develop quantum technologies?

Quantum Integrated Circuits

Bureau ↓ International des ↓ Poids et ↓ Mesures

Department for **UK Real world applications and products** Science, Innovation & Technology

Wearable brain scanner with better sensitivity and lower cost

X

Cerca The University of Nottingham

First commercial trial of a quantum secured communications network in the world

BT

Ition TOSHIBA QUANTUM s et TECHNOLOGIES + Mesures

Putting quantum technologies in space to secure future communications

🗊 INNOVATIVE

Measuring emissions and greenhouse gases more accurately than ever before

Gravity gradient sensor 'seeing' the invisible underground

BIRMINGHAM

Workshop Steering Committee

CIPM (JT Janssen) BIPM Secretary (Pierre Gournay)

NRC-Canada (Kevin Thomson) NPL-UK (Tim Prior) NIST-US (Barbara Goldstein) NMIJ-Japan (Nobu-Hisa Kaneko) NMIA-Australia (Jan Herrmann) PTB-Germany (Nicolas Spethmann) INRiM-Italy (Davide Calonico)

BIPM Workshop on Accelerating the adoption of Quantum Technologies through Measurements and Standards

- 149 participants from 43 NMIs and DIs from 39 economies, and industry associations worldwide
- Consensus to collaborate on quantum technology pre-standardization
- Workshop report: <u>https://www.bipm.org/en</u> /bipmworkshops/quantum-tech
- NEXT STEPS: Steering committee to produce
 White Paper with recommendations

Workshop conclusions

There is a **clear industry need** for application-relevant measurements and standards to advance quantum technologies, and a sense of urgency to address those needs.

 Such standardisation efforts require collaboration – no organisation / country can do it alone.

NMIs are uniquely positioned to contribute to, facilitate and drive those efforts:

- Track record both in early adoption of quantum technologies ('quantum for metrology') and in supporting the development of quantum science and technology ('metrology for quantum').
- Recognised as independent, with an established culture of collaboration

Given the critical role of metrology in the emerging quantum industry, there is a **need for a suitable structure / organisation** to coordinate collaboration between NMIs, aligned with CIPM/BIPM.

Workshop conclusions

BIPM/CIPM has a clear mandate to lead SI unit-based metrology, which includes quantum technology for metrology.

The emerging quantum industry requires measurements, developed in a commercially relevant timeframe, which requires further development of the SI.

A new organisation can address this metrology-for-quantum gap by leveraging the expertise of NMIs and DIs, and working closely with BIPM, industry bodies and standards development organisations.

BIPM/CIPM Quantum Technology for Metrology

NMIs Metrology for Quantum Technology Standards

Steering Committee recommendation

Establish a quantum focused, NMI-led, organisation to promote global innovation and adoption of quantum technologies through international collaborations that provide the technical basis for harmonisation of measurement methods, leading to best practices and standards - **nmi**^Q

- International des
 - Poids et

Benefits of nmi^Q

nmi^Q

Rapidly develop industry-relevant measurements by metrology experts

Establish technical basis for future national and international standards for quantum technologies through:

- Pre-normative R&D in rapidly developing technical areas
- Collaborative development of best practices, test methods and procedures
- Transferring results to standards bodies

Build capabilities and increase the quantum proficiency of NMIs and other laboratories through:

- Providing opportunities for multi-NMI collaboration
- Contributing to BIPM programmes and support for knowledge transfer and training

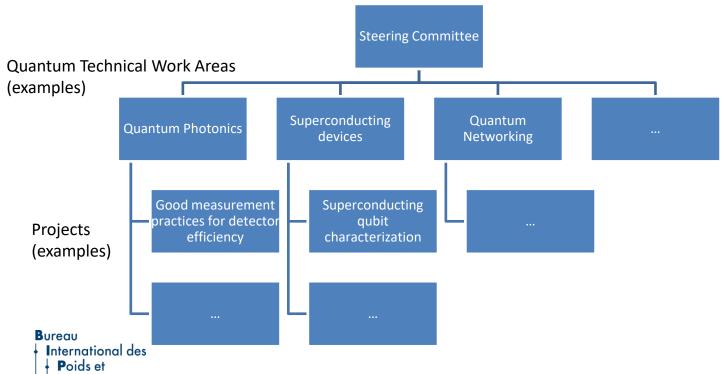
Governance

nmi^Q

METPO

Steering committee members currently developing the final model for **nmi**^Q

Model will be similar to <u>VAMAS</u>


Participation

- International des
 - Poids et

Preliminary organizational structure

nmi^Q

Connections

TETPO

Bureau International des Poids et Mesures (BIPM)

Collaboration on identification of key metrological traceability issues affecting the comparability and accuracy of measurements for quantum technologies. Joint events, workshops, publication, dissemination, educational outreach and knowledge transfer.

ISO and IEC

Joint publications based upon the work of **nmi**^Q to provide the technical basis for future standards for quantum technologies.

- International des
 - Poids et

Thank you

- International des
 - Poids et

