Quantum Sensing Research at NIM

Jifeng QU

National Institute of Metrology(NIM), CHINA

23rd meeting of NMI Directors and Member State Representatives

17-18 October 2024

Bureau

- **International des**
	- Poids et
	- Mesures

■ Overview of Quantum Sensing

n **Typical Quantum Sensing Research at NIM**

n **Future Development and Application in Industry**

n **Summary**

1.1 Basic Principles

1.1 Basic Principles

Different techniques

By leveraging the **quantum states of elementary particles**, high-precision measurement of physical quantities is achieved **through manipulation of energy levels, quantum coherent superposition, and entanglement**, exceeding the accuracy limits of classical methods.

1.1 Basic Principles

1.2 Development Overview

1.3 Technology Advantages

Quantum sensing provides **higher accuracy, sensitivity, resolution, measurement range, non-Invasive /non-destructive or self-calibration capability** , surpassing the performance limits of classical sensors.

Contents

■ Overview of Quantum Sensing

n **Typical Quantum Sensing Research at NIM**

- Ø **Gravity sensing**
- Ø **Magnetic field sensing**
- Ø **RF electric-field sensing**
- Ø **Temperature sensing**

n **Future Development and Application in Industry**

n **Summary**

Quantum Sensing Research at NIM

2.1 Gravity Sensing

Source: Delta g official website

2.1 Transportable Atomic Gravimeter at NIM

NIM-AGRb2 transportable atomic gravimeter

single degree of freedom active vibration isolation platform

Application in seismic observation station

2.1 Transportable Atomic Gravimeter at NIM

2023 11th International Comparison of Absolute Gravimeter(ICAG-2023)

Transport to Table Mountain Geophysical Observatory (TMGO) Boulder, Colorado

Comparison Final Report (2024.10)

2.2 Magnetic Field Sensing

Traditional sensors are affected by environmental and operational conditions. The quantum sensor measures can detect **extremely weak** magnetic fields with **high accuracy and sensitivity**, **Industry** and are **less susceptible to environmental interference.**

Traditional magnetometer: based on electromagnetic induction and other effects, accuracy and sensitivity are limited.

Atomic or NV magnetometers : based on energy level splitting or spin precession

13

2.2 Atomic magnetic sensing at NIM

The traceability of the unit Tesla in a ultra-low field range

Metastability Exchange Optical Pumping (MEOP) of ³He

Compact atomic magnetometer with MEMS cell

With self-developed MEMS Rb cell, we demonstrated a compact geomagnetic sensor, which achieved a sensitivity of 3.4 pT/Hz 1/2.

2.2 Atomic magnetic sensing at NIM

Vector atomic magnetometer with artificial neutral network

Neural network maps the phase signal to magnetic field direction and corrects errors automatically.

The average error of magnetic field angle is

Ultra-high sensitivity vector unshielded SERF magnetometer

Greatly broaden the measurement range of SERF magnetometer based on ultra-precision magnetic compensation and achieved a three-axis measurement.

DACI OpA1 CS1 $\sqrt{DAC2}$ $OpA2$ CS₂

sensitivity of the magnetic field is better than 100 $fT/Hz^{1/2}$.

2.3 RF Electric-field Sensing

Radio-frequency antenna, receiver, and analyzers have **limitations in sensitivity, bandwidth, accuracy, spatial resolution, and need calibration in a standard RF E-field,** the industrial needs **Industry** of modern communication and information transmission cannot be met.

2.3 RF Electric-field Sensing Research at NIM

2.3 RF Electric-field Sensing Research at NIM

Quantum Microwave E-filed Meter

Application:**Microwave power meter**

Application:**Atomic communication**

2.4 Temperature Sensing

Traditional temperature sensors **are easily affected by environmental interference**, such as external magnetic fields, irradiation, thermal cycles or vibration, and are difficult for **high resolution thermal sensing**.

Optical Detected Magnetic Resonance (ODMR)

2.4 Micro-nano Thermometry Using NV Centers at NIM

- n **Various sizes: 20 nm- mm**;**wide temperature range: 100 K~700 K; biological friendly, stable, economical**
- n **NV-center based temperature sensing capability relies on the ODMR measurement, which introduces systematic errors**
- n **Optical Detected Magnetic Resonance (ODMR) systems were set up for metrological research**

2.4 Micro-nano Thermometry Using NV Centers at NIM

n **various results showed that systematic uncertainty research is needed for its promising future as a standard micro-nano meter scale thermometry**

■ Metrology can accelerate the practical **application of NV center thermometer**

■ Overview of Quantum Sensing

n **Typical Quantum Sensing Research at NIM**

n **Future Development and Application in Industry**

- Ø **Embeddedsystems/miniaturization**
- Ø **Integration of AI techniques**
- Ø **Future Applications in Industry**

Summary

4.1 Embedded Systems/Miniaturization

MEMS gravimeter

4.2 Integration of AI Techniques

Application in seismic observation station AI-driven quantum sensing systems can enhance signal-to-noise ratios, suppress background noise, and extract valuable information from noisy or incomplete data, enabling more reliable and accurate measurements in challenging environments.

Deep learning enhanced Rydberg multifrequency microwave recognition

Multiparameter optimisation of a magneto optical trap using deep learning

Recent work at NIM

Phys. Lett. 2 2024; 125 (10): 102405.

Artificial intelligence and machine learning for quantum technologies, Phys. Rev. A 107, 010101, 2023

4.3 Future Applications in Industry

The application scope and fields of quantum sensors are rapidly expanding, **covering multiple key areas such as communications, healthcare, scientific research and resource exploration.**

Scientific Research

Currently advancing scientific research into the microscopic world.

Future quantum sensors will reveal viral mechanisms and explore dark matter.

Communications

Currently, CPT atomic clocks are replacing traditional crystal oscillators.

In the future, molecular clocks and chip-scale optical clocks are expected to further enhance 5G and 6G communication performance.

Healthcare

biomagnetic measurement.

Currently focused on

Future quantum magnetometers will enable high-resolution imaging in brain science and brain-machine interfaces.

Resource Exploration

It has over 30 years of application history in resource exploration and other areas.

In the future, it is expected that quantum gravimeters will generate high-resolution exploration maps of deep minerals.

■ Overview of Quantum Sensing

- n **Typical Quantum Sensing for Metrology and Industry in China**
- n **Future Development Trends**

- n Benefitting from the inherent advantages of quantum systems, quantum sensing has significant advantages over classical sensors in terms of sensitivity, stability, and traceability.
- n NIM keeps pace with this cutting-edge research technology and has conducted a series of studies in fields of quantum sensing of magnetic fields, electric fields, temperature, and gravity.
- n Future development of quantum sensors including miniaturization, multidimensional information perception (Integration of AIand cloud calculation) , etc.
- n Quantum sensing has tremendous potential for development and broad industrial application prospects.

Thank you

Bureau

International des

- Poids et
- **Mesures**

