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Foreword

In 1997 a Joint Committee for Guides in Metrology (JCGM), chaired by the Director of the
Bureau International des Poids et Mesures (BIPM), was created by the seven international
organizations that had originally in 1993 prepared the ‘Guide to the expression of uncer-
tainty in measurement’ and the ‘International vocabulary of basic and general terms in
metrology’. The JCGM assumed responsibility for these two documents from the Technical
Advisory Group 4 of the International Organization for Standardization (ISO/TAG4).

The Joint Committee is formed by the BIPM with the International Electrotechnical Com-
mission (IEC), the International Federation of Clinical Chemistry and Laboratory Medicine
(IFCC), the International Laboratory Accreditation Cooperation (ILAC), the International
Organization for Standardization (ISO), the International Union of Pure and Applied
Chemistry (IUPAC), the International Union of Pure and Applied Physics (IUPAP), and
the International Organization of Legal Metrology (OIML).

JCGM has two Working Groups. Working Group 1, ‘Expression of uncertainty in mea-
surement’, has the task to promote the use of the ‘Guide to the expression of uncertainty
in measurement’ and to prepare documents for its broad application. Working Group 2,
‘Working Group on International vocabulary of basic and general terms in metrology’, has
the task to revise and promote the use of the ‘International vocabulary of basic and general
terms in metrology’ (the ‘VIM’).

In 2008 the JCGM made available a slightly revised version (mainly correcting minor er-
rors) of the ‘Guide to the expression of uncertainty in measurement’, labelling the docu-
ment ‘JCGM 100:2008’.

In 2017 the JCGM rebranded the documents in its portfolio that have been produced by
Working Group 1 or are to be developed by that Group: the whole suite of documents is
now known as the ‘Guide to the expression of uncertainty in measurement’ or ‘GUM’, and
is concerned with the evaluation and expression of measurement uncertainty, as well as
its application in science, trade, health, safety and other societal activities.

This part of the suite contains a collection of examples illustrating the methods for uncer-
tainty evaluation described in the GUM. An overview of the suite is given in Annex A.

This document has been prepared by Working Group 1 of the JCGM, and has benefited
from detailed reviews undertaken by member organizations of the JCGM and National
Metrology Institutes.
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Introduction

The GUM suite of documents (parts listed in Annex A) is concerned with the evaluation of
uncertainty in measurement and how uncertainty is reported and used. Compact examples
are given throughout the GUM suite that relate to specific areas of application and are
intended to illustrate particular concepts. This document contains larger examples and
case studies intended to illustrate the principles presented in the GUM suite for evaluating
and reporting measurement uncertainty.

The examples are chosen to illustrate good practice in the evaluation of measurement
uncertainty using the methods in the GUM, such as the GUF or the MCM or alternative
methods not (yet) covered by the guidance in the suite. In some examples, methods for
uncertainty evaluation are compared to highlight aspects of their suitability for the pre-
sented case.

The context and measurement in the examples are described to the extent relevant; sim-
plifications can have been made in the interest of presenting a concise case. The data used
in the examples is, where possible, taken from real measurements. These data are not
necessarily the best, representing the state-of-the-art or in any other way to be interpreted
as such. Measurement procedures and practices are presented in a concise format and
not intended to enable reproducing the measurement. Where appropriate, references are
provided to documents describing these procedures or practices.

Examples 1 (Measurement of pH: linear interpolation), 2 (Determination of
benzo[a]pyrene), 5 (Greenhouse gas emission inventories), 9 (Calibration of a torque
measuring system), 10 (Conformity assessment of total suspended particulate matter in
air), 11 (Effect of considering a 2D image as a set of pixels on a computed quantity) and
12 (Between-bottle homogeneity of reference materials) were taken from a compendium
of examples [1].

Examples 6 (Simple linear measurement models), 7 (Calibration of weights: second-order
effects in uncertainty evaluation), 8 (Gauge block calibration) and 16 (Comparison loss
in microwave power meter calibration) were taken from JCGM 101:2008 [12]. Example
13 (Measurement of Celsius temperature using a resistance thermometer) was taken from
JCGM 102:2011 [7].

Examples 3 (Relative molecular mass of glucose) and 4 (Gravimetric mixture preparation
and the calculation of composition) were provided by A.M.H. van der Veen (VSL, The
Netherlands). Example 14 (Activity of a radioactive source corrected for decay) was pro-
vided by C. Michotte (BIPM). Example 15 (Breaking force of steel wire rope) was provided
by S. Sidney (NLA, South Africa).

All examples were edited prior to inclusion in this document.

Results are generally reported in the manner described in JCGM 101:2008 [12]. However,
more than the recommended one or two significant decimal digits are often given here to
facilitate comparison of the results obtained from the various approaches.

© JCGM 2024 – All rights reserved Committee draft
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Guide to the expression of uncertainty in
measurement — Part 5: Examples

0 Scope

0.1 This document gives a number of examples, which are worked out in considerable
detail to illustrate the principles presented in the Guide to the expression of uncertainty in
measurement (GUM) for evaluating and reporting uncertainty in measurement. Together
with the (shorter) examples included in the other parts of the GUM, they should enable
users of the GUM to put these principles into practice in their own work.

0.2 Because the examples are for illustrative purposes, they have by necessity been sim-
plified (but not over-simplified). Moreover, because they and the numerical data used in
them have been chosen mainly to demonstrate the principles of the GUM, neither they nor
the data should necessarily be interpreted as describing real measurements, let alone the
state of the art for a particular measurement. While the data are used as given, to prevent
rounding errors, additional digits are retained in intermediate calculations than are usu-
ally shown. Thus the stated result of a calculation involving several quantities may differ
slightly from the result implied by the numerical values given in the text or tables for these
quantities.

0.3 The examples are used to demonstrate, among other:

— Using knowledge about a quantity to obtain an estimate of the quantity and its as-
sociated uncertainty;

— Propagation of uncertainty using the law of propagation of uncertainty (LPU) as in
JCGM 100:2008 and JCGM 102:2011;

— Propagation of distributions using analytical and numerical methods, including the
Monte Carlo method (MCM), as in JCGM 101:2008 and JCGM 102:2011;

— Applying law of propagation of uncertainty (LPU) and MCM for a univariate (scalar)
and multivariate (vector) measurand;

— Applying LPU and MCM for independent and dependent input quantities;

— Using MCM to validate the results provided by LPU;

— Determining a coverage interval or a coverage region;

— Using measurement uncertainty in conformity assessment as in JCGM 106:2012;

— Reporting measurement results.

0.4 An overview of the parts of the GUM suite is given in Annex A. The conventions
and notation applied in this document are summarised in Annex B. The symbols used
throughout the document are explained in the text and in Annex C.

© JCGM 2024 – All rights reserved Committee draft
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1 Measurement of pH: linear interpolation

1.1 Preamble

1.1.1 A generic treatment of two-point and multi-point interpolation of calibration data
is given with uncertainties associated with the data propagated using the law of propa-
gation of uncertainty (LPU) and its generalization to vector measurands. The approach
is applied to the measurement of hydrogen ion activity (pH). Such measurement is one
of the most common in chemistry, although correlations associated with the input quanti-
ties in the measurement model are rarely taken into account. The treatment given follows
common practice, which tends to give an optimistically small evaluation of the uncertainty
associated with an estimated hydrogen ion activity (pH) value. A way of taking correla-
tion into account in one typical instance is given but its implementation is problematical
because of the difficulty in quantifying the correlation.

1.1.2 The VIM concept of calibration [11, Definition 2.39] as constituting two stages is
used. Here, the first stage involves fitting to measured data a function that describes the
relationship of a response (dependent) variable Y to a stimulus (independent) variable X .
The second stage involves using this relationship to determine the value x of a stimulus
given the value y of the response. Uncertainties in both the stimulus and response variables
are handled in both stages and propagated using the LPU in JCGM 100:2008 [6] and its
generalization to vector measurands in JCGM 102:2011 [7].

1.1.3 Two scenarios are considered. One, a single party accesses the calibration data
set and provides the required interpolated value. In doing so, the party may or may not
determine the calibration parameters explicitly. Two, one party has access to the calibration
data set, delivering the calibration parameters to a second party, which in turn provides
the interpolated value.

1.1.4 The approach is applied to the measurement of pH in which up to three two-point
interpolations are required and uncertainties are tracked through the calculation.

1.2 pH of a test solution

1.2.1 pH, the negative logarithm to base 10 of the activity of hydrogen ion in a solution,
is arguably the most measured quantity in chemistry [19]. The pH is a measure of the
acidity of a solution. The pH of a solution is generally measured using a pH-sensitive glass
electrode and an AgCl reference electrode. The potential difference of such an electrode
system is proportional to pH and forms the basis of pH measurement.

1.2.2 In 2002, the International Union of Pure and Applied Chemistry (IUPAC) issued a
recommendation for revision of the pH scale based on the concept of a primary reference
measurement procedure for pH [15]. The use of an electrochemical (Harned) cell fulfils the
criteria for a primary reference measurement procedure so that a pH value thus obtained
is traceable to the International System of Units (SI), here the SI measurement unit 1.

1.2.3 A solution, the pH of which is measured by such a cell at the highest metrolog-
ical level, may be classified as a primary measurement standard and can be used to as-

Committee draft © JCGM 2024 – All rights reserved
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sign pH values to other solutions. Standard solutions are sold as certified reference mate-
rials (CRMs) to calibrate pH meters for routine use.

1.2.4 There are several approaches to pH measurement involving the use of 1-point,
2-point and multi-point calibration, least-squares regression, and with or without temper-
ature correction. Here the 2-point calibration approach, with and without temperature
correction, is used. Two topics are considered: (a) when the temperature of the test solu-
tion matches that of the standard (reference) solutions and (b) when this is not the case.

1.3 Specification of the measurand

The measurand is the pH of a solution being calibrated. More generally, the measurand is
the interpolated independent or dependent variable obtained from a relationship between
those variables derived from data representing values of the variables. Intermediate mea-
surands, when required, are the parameters describing the relationship.

1.4 Measurement model

There are two stages involved in calibration [11, definition 2.39]: (i) determine a calibra-
tion curve from calibration data and (ii) use that calibration curve. Because of the relative
simplicity of two-point and multi-point interpolation as considered here, it may be prefer-
able when circumstances permit to combine the stages into a single-stage model. Such a
model avoids having to deal with intermediate correlation associated with the calibration
curve parameters that are estimated in the first stage and used in the second. Operating in
two stages corresponds to the use of a multi-stage model [10, Clause 8.4] and is necessary
when the construction and use of the calibration model are carried out by different parties.

1.4.1 Generic approach to two-point calibration

1.4.1.1 Two calibration points (X1, Y1) and (X2, Y2) are given that bracket X0, an X -value
for which Y0, the corresponding Y -value, is required under the assumption that the Y -value
lies on the straight line joining the calibration points (see figure 1.1).

1.4.1.2 By similar triangles, with δX = X2 − X1 and δY = Y2 − Y1,

Y − Y1

X − X1
=

Y2 − Y1

X2 − X1
=

δY
δX

. (1.1)

A common representation of a straight-line calibration function, which is used here, is

Y = a+ bX , (1.2)

where a is the intercept on the Y -axis and b is the gradient [61].

NOTE The form (1.2) is used in the straight-line calibration standard ISO/TS 28037 [61] and will
be familiar to many end users.

1.4.1.3 In the single-stage model, a single party has estimates of (X1, Y1), (X2, Y2) and X0,
and obtains an estimate of Y0, the Y -value on the line corresponding to X0 (figure 1.1). In
doing so, the party may or may not determine a and b explicitly. The measurement model
is specified by the description of the provision of Y0.

© JCGM 2024 – All rights reserved Committee draft
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Figure 1.1: Two-point calibration using a linear interpolation function

1.4.1.4 In the two-stage model, however, one party has estimates of (X1, Y1) and (X2, Y2),
and provides estimates of a and b (intermediate measurands) to the second party using
the straightforwardly verified

b =
Y2 − Y1

X2 − X1
. (1.3)

a = Y1 − bX1. (1.4)

The second party (possibly identical to the first party) has estimates of a, b and X0, and
obtains the estimate of Y0 using the expression

Y0 = a+ bX0. (1.5)

The measurement model is again described by the process to provide Y0. The resulting
expression

Y0 = Y1 + b(X0 − X1), (1.6)

and formula (1.3) constitute the measurement model with Y0 as the measurand.

NOTE When X1 and X2 are far from the origin, that is, |X2−X1| ≪max(|X1|, |X2|), an alternative
form may be numerically more stable. One such form is given by working with a transformed
X -variable

eX = X − X1.

Using expressions (1.2) and (1.4), the calibration function can then be expressed as

Y = Y1 + beX , (1.7)

which is evaluated at the value X0 of the independent variable. The resulting expression

Y0 = Y1 + b(X0 − X1) = Y1 +
Y2 − Y1

X2 − X1
(X0 − X1),

and formula (1.3) constitute the measurement model with Y0 as the measurand. It is accepted that
such a transformation is not always appropriate.

Committee draft © JCGM 2024 – All rights reserved
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The form of interpolation considered here is forward interpolation. Inverse interpolation,
when the stimulus value X0 corresponding to a response value Y0 is required, can also be
carried out (for treatments see [61, 63]) but is not required here. The roles of X and Y
can be interchanged when permitted by the context.

1.4.2 Generic approach to multi-point calibration

1.4.2.1 Multi-point calibration is the treatment in clauses 1.4.1 and 1.4.1.3 extended to
an arbitrary number of points. In these clauses, a straight-line segment joining two of
the calibration points serves as the calibration function. When there are m calibration
points (m ≥ 2), with strictly increasing stimulus values, the points are joined pairwise by
successive straight-line segments, the overall construction being a piecewise-linear func-
tion or first-degree spline [26], acting as the calibration function. For each interval between
pairs of successive points, the treatment of clauses 1.4.1 and 1.4.1.3 can be applied directly
to the appropriate segment of the piecewise-linear function.

NOTE When m= 2 the calibration function is a single straight-line segment is naturally monotonic,
a necessary condition. For m > 2, the ordered points may not form a monotonic sequence, a
situation not considered here [63].

1.4.2.2 Alternatively, straight-line fitting by least squares can be used taking reported
uncertainties associated with the calibration data into consideration [61]. Polynomial in-
terpolation or polynomial regression can also be used [63].

1.4.3 Metrological extension

The measurement model implied by two-point calibration is the algorithm to provide Y0
given X0. The data will generally have associated uncertainties arising from a Type A
evaluation of uncertainty [6, clause 4.2] especially following an analysis of repeated ob-
servations. Often there will also be uncertainties obtained from a Type B evaluation and
associated covariances arising from common measurement effects [6, clause 4.3]. Such
covariances should be handled also to avoid producing invalid statements of uncertainty
associated with predicted Y -values. The calibration data considered here are assumed to
have independent errors.

1.5 pH measured at a stipulated temperature

1.5.1 When the cell potential is measured at one of the stipulated temperatures on a
reference material certificate for standard solutions, the following process is applicable.
A correction approach is used to provide the pH of a test solution [121] in which pHX,
the pH of a test solution X, is given by using a cell twice to measure potential EX in X and
potential ES in a standard solution S:

pHX = pHS+
EX − ES

k
. (1.8)

In expression (1.8), pHS is the pH of S, and

k =
RT ln 10

F
,

where R is the gas constant, T the temperature in kelvin and F the Faraday constant.

© JCGM 2024 – All rights reserved Committee draft



JC
G

M
W

G
1

Co
m

m
itt

ee
dr

af
t

6 JCGM GUM-5:2024-12-06

1.5.2 Two other approaches are bracketing methods, which are generally more accurate
and used here. Use is made of the reference material certificates for the standard solutions,
which give pH values and associated standard uncertainties at stipulated temperatures.

It is assumed the temperature lies within the range (here, 5 ◦C to 50 ◦C) covered by the
certificates for the Standard Reference Materials (SRMs) used here, namely, potassium di-
hydrogen phosphate (186-I-g) and disodium dihydrogen phosphate (186-II-g) [82]. Those
certificates contain tables of pH values for temperatures from 5 ◦C to 50 ◦C at a spacing
of 5 ◦C.

1.5.3 The potential EX of the test solution X is measured at temperature TX, one of the
stipulated temperatures in clause 1.5.2. Likewise, the potentials ES1

and ES2
are mea-

sured of two cells with standard solutions S1 and S2 such that the values of ES1
and ES2

bracket EX and are as near as possible to it [23]. The pH of S1 and S2 at temperature TX,
namely, pHS1,TX

and pHS2,TX
, are taken from reference material certificates.

1.5.4 Assuming its validity between the points (ES1
, pHS1,TX

) and (ES2
, pHS2,TX

), linear in-
terpolation is used to provide the pH value pHX corresponding to potential EX. The output
quantity, the measurand, generically Y0, is pHX , the pH of the test solution. The input
quantities in the measurement model are ES1

, ES2
, pHS1,TX

, pHS2,TX
and EX, corresponding

respectively to X1, X2, Y1, Y2 and X0 in the generic approach.

1.5.5 In an extended measurement model [10, clause 9], account is taken of further influ-
ences. In this case, main effects are pH instrument calibration, instrument resolution and
interpolation model. The uncertainties associated with the first two effects are provided
by the instrument manual and inspection of the output display. Incorporating correction
terms to account for these effects,

EX,corr = EX + δEres,X + δEcal,

ES1,corr = ES1 + δEres,S1
+ δEcal, (1.9)

ES2,corr = ES2 + δEres,S2
+ δEcal.

Interpolated pH and correction quantities in expressions (1.9) relating to cell potential are
assumed independent. Clause 1.10.1 contains a discussion of the validation of results.

1.6 pH measurement accounting for temperature

When the cell potential is not measured at one of the temperatures specified on a reference
material certificate for standard solutions, the procedure in clause 1.5 can be extended as
follows. A bracketing approach as in clause 1.5 is used in which three linear interpola-
tions are carried out to estimate pH for solution X and can be described by the following
procedure, which constitutes an algorithmic description of the measurand model.

Measure the temperature TX of the test solution X.

Determine the closest bracketing temperatures T1 and T2 in the SRM certificates such that
TX ∈ [T1, T2].

Measure the potential EX in solution X and potentials ES1
and ES2

in standard solutions S1
and S2.

Committee draft © JCGM 2024 – All rights reserved
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Obtain the certified pH value pHS1,T1
at temperature T1 for standard solution S1 from the

certificate for S1. Likewise, obtain the certified pH value pHS2,T1
at temperature T1 for

standard solution S2 from the certificate for S2.

Repeat this process for temperature T2, that is, obtain the pH value pHS1,T2
for solution S1,

and the pH value pHS2,T2
for solution S2.

Apply three steps of linear interpolation:

1. Interpolate between the points
�

ES1
, pHS1,T1

�

and
�

ES2
, pHS2,T1

�

to give the pH value
pHX,T1

at temperature T1 corresponding to potential EX.

2. Interpolate between the points
�

ES1
, pHS1,T2

�

and
�

ES2
, pHS2,T2

�

to give the pH value
pHX,T2

at temperature T2 corresponding to potential EX.

3. Interpolate between the points
�

T1, pHX,T1

�

and
�

T2, pHX,T2

�

so obtained to give
the pH value pHX,TX

at temperature TX corresponding to potential EX.

The generic treatment in clause 1.4.1 is thus applied three times to implement these three
stages of two-point interpolation.

The measurement model is specified by the above algorithmic description where the input
quantities in the model are TX, EX, ES1

, ES2
, pHS1,T1

, pHS2,T1
, pHS1,T2

and pHS2,T2
.

1.7 Uncertainty propagation

1.7.1 Uncertainty propagation in this clause is based on the assumption that the input
quantities TX, EX, ES1

, ES2
, pHS1,T1

, pHS2,T1
, pHS1,T2

and pHS2,T2
, that is, the measured po-

tentials and the pH values for the standard solutions, to the procedure in clause 1.6 are
independent. This assumption is consistent with IUPAC recommendations for pH mea-
surement [15]. There, procedures are given for accounting for input standard uncertain-
ties based on the correlation-free variant of the law of propagation of uncertainty in [6,
clause 5.1]. In practice, input quantities are likely to be correlated and account should be
taken of that fact. See the discussion in clause 1.10.3.

1.7.2 Consider first the two-stage model. For the first stage, the inputs are the calibration
data x1, y1, x2 and y2 and their associated standard uncertainties. The outputs are the
calibration parameters ba and bb and their associated covariance matrix V[ba,bb]. The model
is bivariate (two output quantities):

b =
Y2 − Y1

X2 − X1
=

δY
δX

, a = Y1 − bX1. (1.10)

For the uncertainty propagation, [7, formula (3)] is applied to obtain the output covariance
matrix for the model parameters a and b:

V[ba,bb] =

�

u2(ba) u(ba,bb)
u(ba,bb) u2(bb)

�

= C1V inC⊤1 . (1.11)

In formula (1.11), u(ba,bb) denotes the covariance associated with ba and bb, V in denotes the
covariance matrix of the input parameter values, namely, the 4× 4 diagonal matrix with
diagonal entries u2(x1), u2(y1), u2(x2) and u2(y2), and

C1 =
1
δx

�

−bbx2 x2 bx1 −x1
bb −1 −bb 1

�

(1.12)

© JCGM 2024 – All rights reserved Committee draft
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is the sensitivity matrix containing the first-order partial derivatives of X1, Y1, X2 and Y2
with respect to a and b, evaluated at their estimates x1, y1, x2, y2 and bb.

1.7.3 In the second stage, the inputs are the outputs from the first stage together with
x0 and u(x0). The measurement model is

Y0 = a+ bX0.

Applying uncertainty propagation [7, Formula (3)] once more, the output standard uncer-
tainty u(y0) is given by

u2(y0) = C2V[ba,bb]C
⊤
2 +bb

2u2(x0), (1.13)

where C2 is the 1× 2 sensitivity matrix

C2 =
�

1 x0
�

. (1.14)

1.7.4 The single-stage model can be obtained by combining the two stages above. The
substitution of formula (1.11) into expression (1.13) yields

u2(y0) = C2C1V inC⊤1 C⊤2 +bb
2u2(x0).

Setting

q =
x0 − x1

δx
, (1.15)

the use of expressions (1.12) and (1.14) gives

C2C1 =
1
δx

�

−bb(x2 − x0) x2 − x0 −bb(x0 − x1) x0 − x1

�

=
�

−bb(1− q) 1− q −bbq q
�

.

Hence, using

V in =







u2(x1)
u2(y1)

u2(x2)
u2(y2)






,

C2C1V in =
�

−bb(1− q)u2(x1) (1− q)u2(y1) −bbqu2(x2) qu2(y2)
�

.

Thus,

C2C1V inC⊤1 =
1
δx





−bb(1− q)u2(x1)(−bbx2) + (1− q)u2(y1)x2 −bbqu2(x2)bbx1

−qu2(y2)x1 −bb2(1− q)u2(x1)− (1− q)u2(y1)
+bb2qu2(x2) + qu2(y2)



,

which is used in expression (1.13) to yield, after simplification,

u2(y0) = bb
2(1−q)2u2(x1)+(1−q)2u2(y1)+bb

2q2u2(x2)+q2u2(y2)+bb
2u2(x0). (1.16)

The result (1.16) can also be confirmed from first principles.
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1.8 pH estimation at a stipulated temperature and associated uncertainty
evaluation

1.8.1 The process in clauses 1.5.3 and 1.5.4 is followed. Consider the estimation of pH
at a specific temperature. Values of potential in the test and standard solutions S1 and S2
are as follows:

bEX = −1.875mV, bES1 = 6.15 mV, bES2 = −26.35 mV,

each of which was the average of 4 repeated observations. pH values at 25 ◦C for S1 and S2
from [82] are

ÓpHS1,25 ◦C = 6.8640, ÓpHS2,25 ◦C = 7.4157.

Formulæ (1.3) and (1.6) yieldÓpHX = 7.0002. The standard uncertainties associated with
the input quantities are given in [82] and are as follows:

u(bEX) = 0.0250 mV, u(bES1) = 0.0289mV, u(bES2) = 0.0289mV,

u(ÓpHS1,25 ◦C) = 0.0051, u(ÓpHS2,25 ◦C) = 0.0051.

The propagation of uncertainty carried out in accordance with expressions (1.15) and
(1.16) yields u(ÓpHX) = 0.0041.

1.8.2 These results relate to the basic measurement model for pH. The extended model
would work with the corrected quantities in (1.9) rather than the uncorrected quantities.
The estimates of all correction terms in the extended model are taken as zero. δEcal appears
in three of expressions (1.9), so seemingly inducing correlation. However, this quantity
is eliminated when the corrected quantities are used rather than the original. This effect
can be seen mathematically by substituting EX,corr, ES1,corr and ES2,corr as the ‘new’ X0, X1
and X2, respectively, from expressions (1.9) into expressions (1.3) and (1.6).

1.8.3 The extended model would deliver the same estimate and standard uncertainty as
the basic model to the number of digits reported.

1.9 pH estimation accounting for temperature and associated uncertainty
evaluation

1.9.1 The process in clause 1.6 is followed. The measured temperature of the test solu-
tion is bTX = 23.7 ◦C. The bracketing pair T1 = 25 ◦C and T2 = 20 ◦C is selected.

Potential measurement gives

bEX = −1.875mV, bES1
= 6.15 mV, bES2

= −26.35mV,

each of which was the average of 4 repeated observations. pH values at 25 ◦C and 20 ◦C
for S1 and S2 from [82] are

ÓpHS1,T1
= 6.8640, ÓpHS2,T1

= 7.4157,

ÓpHS1,T2
= 6.8796, ÓpHS2,T2

= 7.4323.

Linear interpolation between the points

(bES1
, ÓpHS1,T1

)≡ (6.15mV, 6.8640) and (bES2
, ÓpHS2,T1

)≡ (−26.35mV, 7.4157)

© JCGM 2024 – All rights reserved Committee draft
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gives the pH valueÓpHX,T1
= 6.8681 at temperature bT1 = 25 ◦C corresponding to potential

bEX = −1.875 mV.

Likewise, linear interpolation between

(bES1
, ÓpHS1,T2

)≡ (6.15mV, 6.8796) and (bES2
, ÓpHS1,T2

)≡ (−26.35mV, 7.4323)

gives the pH valueÓpHX,T2
= 7.4200 at temperature bT2 = 20 ◦C corresponding to potential

bEX = −26.35 mV.

Linear interpolation between the points (T1, ÓpHX,T1
) and (T2, ÓpHX,T2

) gives the pH value
ÓpHX = 7.0109 at temperature bTX = 23.7 ◦C corresponding to potential bEX = −1.875mV.

Associated standard uncertainties are

u(bTX) = 0.0058 ◦C, u(bEX) = 0.025 mV,

u(bES1
) = 0.029mV, u(bES2

) = 0.029 mV,

u(ÓpHS1,T1
) = 0.0051, u(ÓpHS2,T1

) = 0.0051,

u(ÓpHS1,T2
) = 0.0051, u(ÓpHS2,T2

) = 0.0051.

The above standard uncertainties associated with standard pH solutions are given in [82].

The application of the method of clause 1.6 gives

ÓpHX = 7.0109, u(ÓpHX) = 0.0041.

1.10 Interpretation of results

1.10.1 Validation of results

1.10.1.1 A check of the numerical accuracy of linear interpolation was made for the ex-
ample in clause 1.6. Since NIST certificate [82] gives pH values for the standard solutions
considered at temperature values from 5 ◦C to 50 ◦C in steps of 5 ◦C, cubic interpolation
based on [63]was carried out using temperature values 15 ◦C, 20 ◦C, 25 ◦C and 30 ◦C (two
values immediately on either side of 23.7 ◦C), and the corresponding pH values for S1 given
in the certificate. The interpolated value at 23.7 ◦C was 6.8677 compared with 6.8681 from
linear interpolation. The magnitude of the difference, 0.0004, between these values is a
factor of ten smaller than the standard uncertainty associated with the obtained pH value.
A comparable result was obtained for S2 and for the other linear interpolations carried out.
Thus, linear interpolation is considered adequate in this example.

1.10.1.2 In a study by Damasco et al. [36] it was reported that a Monte Carlo method
(MCM) applied to primary pH measurement gave similar results to the LPU [6]. The work
of Wiora and Wiora [120] came to the same conclusion. To test these conclusions for the
data used here, the MCM of JCGM 101:2008 [12] was applied to the example in clause
1.9. The input quantities were modelled by normal distributions with means equal to the
input estimates and standard deviations equal to the associated standard uncertainties.
For 106 Monte Carlo trials, exactly the same result was delivered as in that clause to the
number of decimal places stated.

Committee draft © JCGM 2024 – All rights reserved
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1.10.2 Rounding

1.10.2.1 The instrument display gave results in volts with 3 significant decimal places.
Assume a rounding error in the last digit, that is, in the interval ±0.0005V. Characterizing
resolution by a rectangular distribution over this interval, the consequent resolution stan-
dard uncertainty Eres applying to all potential readings is 0.0005V/

p
3= 0.00029 V. This

standard uncertainty is some one hundredth of the above potential standard uncertainties
and so is negligible.

1.10.2.2 The standard uncertainties associated with the interpolated value pHX are
scarcely influenced by the uncertainties associated with the pH values of the standard
solutions. As an instance, if the latter standard uncertainties are replaced by zero in the ex-
ample in clause 1.9, u(ÓpHX) becomes 0.0040 (originally 0.0041), implying that the further
repeated observations of the three potentials would do much to reduce u(ÓpHX), assuming
the repeated observations are genuinely independent.

1.10.3 Correlation

1.10.3.1 It is emphasized that the treatment given regards all input quantities as inde-
pendent. Independence is a common assumption in general in pH uncertainty evaluation.
This assumption is often made implicitly (see [43, 50, 71, 114], for instance), but has
adverse consequences in that evaluated pH uncertainties can be optimistically small. To
obtain more valid results, covariance effects should be be quantified and incorporated.

1.10.3.2 Laboratories that follow IUPAC recommendations [15] will not take correlation
into consideration and so might be reporting unreasonably small measurement uncertain-
ties. There seems to be little relevant literature available on pH measurement on obtain-
ing correlations associated with input quantities. If such correlations were available, they
could be accounted for by applying the provisions in JCGM 100:2008 [6, clause 5.2]. It is
noted that correlation issues are discussed in [119], but they relate to correlations induced
by the choice of parametrization rather than being associated with input quantities.

1.10.3.3 In terms of the pH certificates used here, it would appear that covariance be-
tween pH at different temperatures, and probably between pH values for different materi-
als, can be deduced. The certificates give two uncertainties, one (as in clauses 1.8 and 1.9)
for an SI-traceable value and one, much smaller, that omits the uncertainty associated with
the Bates-Guggenheim convention [4]. The Bates-Guggenheim conventional uncertainty,
as given on the certificates, could hence reasonably be taken as at least an approximate
covariance when using the SI-traceable values. Doing so gives the correlation very close
to unity, and indeed that (or any respectably high value) is suggested as a generally con-
servative treatment. See clause 1.10.3.6 for a relevant discussion.

1.10.3.4 To indicate the effect of ignoring correlation, an exercise is carried out in which
full correlation is present between the pH values for the standards. Assume that all quan-
tities are independent apart from these two pH values, which are accorded a correlation of
unity. For this case of perfect correlation [21, 29, 44], the standard uncertainties associated
with these quantities must be identical, which indeed they are, being equal to 0.0051. In
terms of the generic notation of clause 1.7.2, the input covariance matrix V in is no longer

© JCGM 2024 – All rights reserved Committee draft
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diagonal but has covariance u2(y1) = u2(y2) in off-diagonal positions (2,4) and (4,2):

V in =







u2(x1)
u2(y1) u2(y1)

u2(x2)
u2(y1) u2(y1)






. (1.17)

Noting that u2(y1) = u2(y2) = u(y1, y2) in the fully correlated case, where u(y1, y2) is the
covariance associated with y1 and y2, by applying a similar treatment to that in clause 1.7.4
but using the covariance matrix (1.17) gives

u2(y0) = bb
2(1− q)2u2(x1) + (1− q)2u2(y1) + 2q(1− q)u(y1, y2)

+bb2q2u2(x2) + q2u2(y2) +bb
2u2(x0). (1.18)

The only difference is that the terms

(1− q)2u2(y1) + q2u2(y2) = [(1− q)2 + q2]u2(y1) (1.19)

in the uncorrelated treatment [expression (1.16)] are replaced by

(1− q)2u2(y1) + 2q(1− q)u(y1, y2) + q2u2(y2)

= [(1− q)2 + 2q(1− q) + q2]u2(y1) (1.20)

in the fully correlated case [expression (1.18)]. Since expression (1.20) simplifies (exactly)
to u2(y1), expression (1.18) becomes

u2(y0) = bb
2(1− q)2u2(x1) + u2(y1) +bb

2q2u2(x2) +bb
2u2(x0) (1.21)

in the fully correlated case. By applying a similar treatment to that in subclause 1.7 on the
general single-stage model but using the covariance matrix (1.17) gives

u2(y0) = bb
2(1− q)2u2(x1) + (1− q)2u2(y1) + 2q(1− q)u(y1, y2)

+bb2q2u2(x2) + q2u2(y2) +bb
2u2(x0). (1.22)

Noting that u2(y1) = u2(y2) = u(y1, y2) in the fully correlated case, where u(y1, y2) is the
covariance associated with y1 and y2, expression (1.22) becomes

u2(y0) = bb
2(1− q)2u2(x1) + u2(y1) +bb

2q2u2(x2) +bb
2u2(x0). (1.23)

1.10.3.5 In the application of expression (1.23) to the data in subclause 1.7, the stan-
dard uncertainty associated with ÓpHX = 7.0109 becomes u(ÓpHX) = 0.0051 (compared
with 0.0041 when correlation between the pH standards is disregarded). Unsurprisingly,
this value of u(ÓpHX) is the same as the (identical) values of the ‘input’ standard uncertain-
ties u(ÓpHS1,25 ◦C) and u(ÓpHS2,25 ◦C). Thus there is no reduction in uncertainty in the fully
correlated case.

It is observed that the standard uncertainties u(ÓpHS1,25 ◦C) and u(ÓpHS2,25 ◦C)make compar-
atively large contributions compared with those for the measured potential values. The
five standard uncertainty contributions [the square roots of the successive terms on the
right side of expression (1.16)] in the case where correlation is ignored are

−0.0004, 0.0001, 0.0038, 0.0013, −0.0004

Committee draft © JCGM 2024 – All rights reserved
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to four decimal places. The values are to be compared with the corresponding four values
from expression (1.23), namely,

−0.0004, 0.0001, 0.0051, −0.0004,

in the correlated case, confirming that perfectly correlated standard uncertainty compo-
nents are combined additively (see [6, clause 5.2.2, note 1]):

0.0038+ 0.0013= 0.0051.

The situation is compounded in clause 1.9 where four (rather than two) pH values and
two temperature values are involved.

1.10.3.6 Independence of the pH standards is not a valid general assumption. A treat-
ment such as given in [29, section 4.1] is suggested, that is, to work with a common cor-
relation coefficient ρ associated with the input pH values. The basic change would be that
the off-diagonal terms of V in in formula (1.17) would become ρu2(y1). (The case ρ = 0
yields the uncorrelated case and ρ = 1 the case of perfect correlation.) A value for ρ
might be obtained on technical grounds by examining uncertainty budgets (to see the rel-
ative contribution from the Bates-Guggenheim convention, for instance) or some other
means such as employing expert judgment.

1.10.3.7 A further, chemical, issue is that the NIST standards are not solutions; they
are solids that must be weighed, mixed and fully dissolved in high-purity water. Buffer
solutions are not particularly sensitive to minor dilution problems, but the preparation
just mentioned will add further variation. Atmospheric CO2, for example, can shift the pH
values, especially in neutral and alkaline pH test samples (pH≥ 7). Although a laboratory
would exercise care in measuring secondary solutions, the analysis given here omits these
important handling effects.

© JCGM 2024 – All rights reserved Committee draft
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2 Determination of benzo[a]pyrene

2.1 Preamble

2.1.1 The aim of this example is to show the uncertainty evaluation for determination of
low levels of benzo[a]pyrene (BaP), an important polycyclic aromatic hydrocarbon (PAH)
for ambient air monitoring. A comparison between the results obtained according to
the JCGM 100:2008 uncertainty framework (GUF) [6] and the Monte Carlo method (MCM)
for the propagation of distributions [12, 7] is made and discussed.

2.1.2 Determination of low levels of PAHs is an important issue since they are ubiquitous
toxic contaminants that can be present in all the environmental compartments even at
trace levels. Among the various PAHs, BaP is classified as a carcinogenic agent and is listed
in the current European legislation [42] as a marker of the carcinogenic risk for the whole
class of PAHs in ambient air.

2.1.3 This example aims at comparing the results obtained by application of the GUF [6]
and the MCM for propagation of distributions [12] to real data sets derived from the quan-
tification of a low mass of BaP spiked on filters commonly used for airborne particulate
matter sampling.

2.1.4 The description of the analytical method to quantify BaP in ambient air can be
found in [99], whereas details on the uncertainty evaluation, not explicitly reported in the
present example, can be found in [103].

2.2 Specification of the measurand

2.2.1 A glass fibre filter (Pall & Whatman) having diameter of 47 mm, a type of filter com-
monly used for the sampling of airborne particulate matter, was spiked with the certified
reference material (CRM) NIST SRM 2260a, containing 36 PAHs in an organic solution.
The spiked filter was extracted by Soxhlet, following the extraction procedure described
in [99]. The same filter was subsequently extracted a second time, thus obtaining a di-
luted sample. The mass of BaP present in the two extracts was determined using a gas
chromatograph coupled with a mass spectrometer (GC-MS).

NOTE Spiking is an analytical procedure by which a known mass (or amount of substance) of one
or more compounds is added to serve as a reference point.

2.2.2 The measurand in the present example is the mass mE of BaP contained in a nom-
inal volume of 1 µL of the second extract.

2.3 Measurement model

2.3.1 The quantification of the mass of BaP contained in 1 µL of the second extract was
performed according to the Internal Standard method described in EN 15549 [40]. An
aliquot of the NIST SRM 2270, containing deuterated benzo[a]pyrene (BaP-d12), was
added to the solution in order to obtain a concentration of BaP-d12 equal to 0.2455 µgmL−1,
to be used as the internal standard. Then, 1 µL aliquots of the solution were repeatedly
(three times) injected in the GC-MS. The quotient of the peak area corresponding to the
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analyte and that corresponding to the internal standard was used to determine the mass
mE of BaP present in the injected volume of the extracted sample, according to the model

mE = f
AE

AISE
mISE, (2.1)

where f is the GC-MS calibration factor, AE is the mean area (expressed in arbitrary
units, a.u.) of the chromatographic peak corresponding to BaP in the extract, whereas mISE
and AISE are the mass (ng) and the mean chromatographic area (a.u.) for the internal stan-
dard in the extract (ISE).

2.3.2 The calibration factor f was obtained as the arithmetic mean of three calibration
factors corresponding to three reference solutions at different BaP concentrations. Details
of the calibration procedure were reported in [103]. In the evaluation of the uncertainty
associated with f (characterized by 9 degrees of freedom), covariance terms between the
three factors were taken into account: they were due to the same mass of the internal
standard used in the calibration model for each of the factors and to the same CRM used
for preparing the three necessary reference solutions. For the same reason, f and mISE, as
input quantities of measurement model (2.1), were correlated because of the use of the
same internal standard both in the calibration and in the analysis.

2.3.3 The mass mISE and the associated uncertainty of the internal standard were ob-
tained from its calibration certificate. The degrees of freedom was considered to be very
large, so that it did not contribute to the effective degrees of freedom of the output uncer-
tainty.

2.3.4 Mean chromatographic peak areas AE and AISE of BaP and BaP-d12 were evaluated
as the arithmetic means of the three repetitions of the area measurement of the relevant
chromatographic peaks. Their standard uncertainties were calculated as the standard de-
viations of those means [6, clause 4.2.3] (hence, having two degrees of freedom). A strong
linear relationship was observed between the areas of the BaP and those of the ISE in the
same run; hence a corresponding covariance term for the two mean areas was calculated
according to [6, clause 5.2.3]. The estimates of the means, standard uncertainties, and
covariances associated with the aforementioned input quantities are reported in table 2.1.

Table 2.1: Estimate, standard uncertainty, degrees of freedom and covariance of the input
quantities in model (2.1)

Quantity Estimate Std. uncertainty Deg. of freedom Covariance

f 0.616 0.017 9
mISE 0.2455 ng 0.0036 ng ∞ −3.3 × 10−5 ng

AE 85 114 a.u. 9564 a.u. 2
AISE 917546 a.u. 44 492 a.u. 2 −2.03× 108 (a.u.)2

2.4 Uncertainty propagation

2.4.1 GUF

2.4.1.1 For calculating the uncertainty associated with the estimate ÒmE = 0.014ng of the
measurand, both the GUF [6] and the MCM for the propagation of probability distributions
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[7, 12] were applied and compared.

2.4.1.2 Applying the law of propagation of uncertainty (LPU) to model (2.1), taking into
account the uncertainty and covariance contributions of the input quantities reported in
table (2.1), the resulting standard uncertainty u(ÒmE) was 0.002 ng. Table 2.2 reports the
uncertainty budget for the mass ÒmE = 0.014ng of BaP of the sample obtained with the
second extraction (the first two columns repeat part of the information already available
in table 2.1). Specifically, in addition to the uncertainty contributions, the table gives
the contributions to the uncertainty budget arising from the covariances. Accounting for
covariance contributions gives u2(ÒmE) = 4.1 ng2 whereas disregarding them gives 3.1 ng2,
some 25 % smaller.

Table 2.2: Uncertainty budget for the mass mE

Quantity (x i) u(bx i) ci = ∂ ÒmE/∂ x i c2
i u2(bx i)/ng2

f 1.7 × 10−2 2.28× 10−2 ng 1.50× 10−7

mISE 3.6 × 10−3 ng 5.71× 10−2 4.23× 10−8

AE 9.6 × 103 a.u. 1.65× 10−7 ng (a.u.)−1 2.50× 10−6

AISE 4.4 × 104 a.u. −1.53× 10−8 ng (a.u.)−1 4.53× 10−7

u(bx i , bx j) cic j 2cic ju(bx i , bx j)/ng2

f , mISE −3.3 × 10−5 ng 1.30× 10−3 ng −8.59× 10−8

AE, AISE −2.03× 108 (a.u.)2 −2.52× 10−15 ng2 (a.u.)−2 1.02× 10−6

u2(ÒmE) 4.1 × 10−6

2.4.1.3 The effective degrees of freedom νeff for u(ÒmE) was calculated using the Welch-
Satterthwaite formula [6, eqn. (G2.b)], which was applied to the input uncertainties and
their corresponding degrees of freedom:

νeff =
u4(ÒmE)
∑

i c4
i u4(bx i)/νi

≈ 5.2. (2.2)

This evaluation, however, neglects accounting for the covariances between the input quan-
tities. A generalization of the Welch–Satterthwaite formula for use with correlated quan-
tities is available [118]:

νeff,ρ =
u4(ÒmE)

∑

i

∑

j r2
i jc

2
i c2

j u2(bx i)u2(bx j)/νi
. (2.3)

The two non-trivial correlation coefficients between the estimates of the input quantities
are

r(bf ,ÒmISE) =
u(bf ,ÒmISE)

u(bf )u(ÒmISE)
=

−3.3× 10−5

1.7× 10−2 × 3.6× 10−3
= −0.54,

r(bAE, bAISE) =
u(bAE, bAISE)

u(bAE)u(bAISE)
=

−2.03× 108

9.6× 103 × 4.4× 104
= −0.48,

whereas other correlation coefficients are either 0, as for r(bf , bAISE), or 1, as for r(bf , bf ).
The calculation of the effective degrees of freedom using equation (2.3) yields νeff,ρ ≈ 4.8.
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2.4.1.4 Coverage factors of a Student t-distribution with integer degrees of freedom are
given in [6, table G.2]. Coverage factors for non-integer values can be recovered by means
of common statistical software. νeff = 5.2 (ignoring the correlations) and νeff,ρ = 4.8
(including the correlations) correspond to 95 % coverage factors k = 2.5 and k = 2.6,
respectively. Using the latter coverage factor, the expanded uncertainty U = k u(ÒmE) at a
95 % coverage probability is 0.0052 ng.

2.4.2 MCM

2.4.2.1 The MCM for propagation of probability distributions of the input quantities was
applied in order to approximate the distribution for the measurand mE, the mass of BaP in
the extract. For this purpose, suitable probability distributions were assigned to the input
quantities in model (2.1), according to the criteria prescribed in [12, 7].

2.4.2.2 Since the available information about f and mISE were estimates and their associ-
ated covariance matrix, a bivariate normal distribution was assigned to these quantities [7,
Clause 6.4.8]. Hence, the mean of this bivariate normal distribution is a vector [bf ,ÒmISE]
and its covariance matrix is

V =

�

u2(bf ) u(bf ,ÒmISE)
u(bf ,ÒmISE) u2(ÒmISE)

�

,

whose components are available in table 2.1. Note that such a treatment is a simplification
as it ignores the fact that u(bf ) is supported by a small degrees of freedom. One way to
jointly model f using the t9-distribution and mISE using the normal distribution is with the
use of copulas [90].

2.4.2.3 The N = 2 quantities AE and AISE were estimated using n= 3 repeated indications
(bAEi

and bAISEi
, respectively). Therefore, according to [7, Clause 5.3.2], a scaled and shifted

bivariate t-distribution with one degree of freedom (ν= n− N) was assigned to them. The
expectation of the distribution is the vector [bAE, bAISE]⊤ and its scale matrix S/n is

S =
1
ν

� ∑3
i=1(bAEi

− bAE)2
∑3

i=1(bAEi
− bAE)(bAISEi

− bAISE)
∑3

i=1(bAEi
− bAE)(bAISEi

− bAISE)
∑3

i=1(bAISEi
− bAISE)2

�

,

whose components are S1,1 = 548 861202 (a.u.)2, S1,2 = S2,1 = −1220 621757 (a.u.)2,
and S2,2 = 11877 338582 (a.u.)2. Note that for ν= 1, the mean and the covariance matrix
of the t-distribution are not defined. In contrast, a coverage region for the distribution can
always be determined [7, Clause 5.5.2, Note 1].

2.4.2.4 The propagation of the probability distributions for the input quantities through
measurement model (2.1) was implemented in the R environment [95] by applying the
R functions rmvnorm and rmvt available in the “mvtnorm” package [49]. For each input
quantity, M = 107 values were drawn. Since only positive values of the measurand are
feasible, the joint input probability density functions were numerically truncated at zero
by disregarding negative values drawn during the MCM simulation [12, Clause 9.4.2.1.1,
Note], thus obtaining corresponding BaP mass values smaller in number than M . The
number of values retained, however, was about 9 × 106, sufficient to provide a reliable
numerical approximation for the measurand distribution. From the MCM distribution, the
shortest 95 % coverage interval was obtained and reported in table 2.3.
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NOTE The rejection of unphysical MCM values for the input distributions is just an approximate
and somewhat crude procedure to take into account the constraint mE > 0. A rigorous treatment
using Bayesian inference [113] would naturally include the constraint as prior knowledge about
the measurand. Also see [12, Scope, NOTE 2].

2.5 Reporting the result

2.5.1 Figure 2.1 shows the results for mE determined using GUF (bell-shaped curve)
and MCM (frequency distribution shown as a histogram). The endpoints of the coverage
intervals are also reported in table 2.3.
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Figure 2.1: Results for mE determined using GUF (bell-shaped curve) and MCM (fre-
quency distribution shown as a histogram).

Table 2.3: Estimate, associated standard uncertainty and 95 % coverage interval for mE as
provided by GUF; median and shortest 95 % coverage interval from MCM

Method ÒmE/ng Median/ng u(ÒmE)/ng 95 % C.I./ng
GUF 0.014 — 0.002 [0.009, 0.019]
MCM — 0.014 — [≈ 0, 0.032]

2.5.2 In table 2.3, neither the mean nor the standard deviation of the MCM distribution
are given, as they are unreliable. This is due to the presence in the input distributions of
a bivariate for which these moments are not defined (see 2.4.2.3 and 2.6.1). By contrast,
the median and the endpoints of coverage intervals, being quantiles (which always exist),
are meaningful. It is worth noting that the MCM median (0.014 ng) is close to the GUF
estimate.
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2.6 Interpretation of results

2.6.1 When applying MCM, the measurand estimate and the associated uncertainty are
usually taken as the mean and the standard deviation of the simulated output results, ac-
cording to [12, eqns. (16) and (17)]. Nonetheless, [12, Clause 6, Note 2] states that in
some special circumstances, such as when one of the input quantities has been assigned a
Student t-distribution with fewer than three degrees of freedom, the expectation and stan-
dard deviation of the output quantity might not exist and the above-cited equations (16)
and (17) in JCGM 101:2008 might not then provide meaningful results. A coverage inter-
val for the measurand can, however, be formed, since the simulated output distribution is
meaningful. This is exactly the situation of the present example, for which, in fact, plau-
sible estimates and corresponding standard uncertainties are those obtained within the
GUF, as reported in table 2.3, whereas feasible coverage intervals are those provided by
MCM, as discussed shortly.

2.6.2 From figure 2.1, it is evident that the two approaches give quite different results in
terms of coverage intervals. Although the assumed output distribution in the GUF is a Stu-
dent t-distribution with few degrees of freedom, hence leading to a large coverage factor
for the calculation of the corresponding expanded uncertainty, the MCM coverage interval
is 3.2 times larger than that obtained in the GUF. Moreover, it appears asymmetric with
respect to the measurand estimate because of the left-censoring of the values generated
because of the physical constraint. This is a clear example of those situations in which
the Central Limit Theorem does not hold, since the probability density function (PDF) for
the output quantity is neither a normal distribution nor a scaled and shifted Student t-
distribution.

2.6.3 The Eurachem/CITAC guidelines on uncertainty evaluation for analytical measure-
ments [39] recommend truncating the coverage interval at zero whenever a negative lower
limit is found for a non-negative quantity.

2.6.4 Summarizing, this example is a clear case in which blind adherence either to the
approach in JCGM 100:2008 [6] or to the MCM in [12, 7] would be dangerous. Care-
ful considerations of estimates, standard uncertainties and coverage intervals are always
needed according to the specific problem under study.
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3 Relative molecular mass of glucose

3.1 Preamble

3.1.1 This example demonstrates the uncertainty evaluation in a calculation using refer-
ence data, in this instance standard atomic weights. The case shows how to model igno-
rance about the isotopic composition of the elements in the material and how to propagate
the measurement uncertainty using the law of propagation of uncertainty (LPU).

3.1.2 Relative molecular masses of substances, also known as “molecular weights”, are
frequently used in science, for example, to study the thermodynamics of the conversion
of glucose. Relative molar masses can be calculated from the standard atomic weights of
the elements present in the molecule, appreciating the coefficients describing the atomic
composition. For glucose, whose chemical formula is C6H12O6, these coefficients take the
values 6 for carbon, 12 for hydrogen, and 6 for oxygen. Relative atomic and molecular
masses are functions of the isotopic composition of the elements present in the material(s)
at hand [14]. The standard atomic weights apply to “normal materials”, that is, materials
that have not been artificially altered in isotopic composition and are a relevant source of
the element. Such materials include laboratory reagents [117].

3.1.3 In this example, the isotopic composition of the elements in the material is unavail-
able. The calculation of the relative molecular mass of glucose will therefore be based on
the assumption that the isotopic compositions of the elements in the molecule lie some-
where in the interval of values of isotopic compositions for normal materials. For ele-
ments with documented substantial variation in isotopic composition, the standard atomic
weights are given in the form of an interval (see table 3.1).

Table 3.1: Lower (a) and upper (b) bounds for the standard atomic weight intervals of
hydrogen, carbon and oxygen [93]

i Element a b

1 hydrogen 1.00784 1.008 11
2 carbon 12.0096 12.0116
3 oxygen 15.99903 15.999 77

3.2 Measurement model

The relative molecular mass of glucose M is given by

M =
3
∑

i=1

νiAi , (3.1)

where

M denotes the relative molecular mass (molecular weight),

νi the atomic composition coefficient of element i in the molecule,

Ai the standard atomic weight (relative atomic mass) of element i.

Committee draft © JCGM 2024 – All rights reserved



JC
G

M
W

G
1

Co
m

m
itt

ee
dr

af
t

JCGM GUM-5:2024-12-06 21

3.3 Uncertainty evaluation

3.3.1 The measurement model (3.1) is linear because the atomic composition coefficients
are known exactly. In this case, the LPU can be applied to give an exact expression for the
squared standard uncertainty associated with ÒM as follows:

u2(ÒM) =
3
∑

i=1

ν2
i u2(bAi). (3.2)

3.3.2 For the above calculations, an estimate of the relative atomic mass of each element
is required with an associated standard uncertainty. The measurement uncertainty should
account for at least (a) the knowledge about the isotopic composition of the materials
considered, and (b) the uncertainty associated with the measurement of the masses of the
isotopes by mass spectroscopy.

3.3.3 For each element, both the estimate and the standard uncertainty can be obtained
from a Type B evaluation of standard uncertainty using the atomic-weight intervals given
in table 3.1. As the isotopic composition with respect to the elements H, C, and O can lie
anywhere in the respective atomic-weight intervals, i.e., there is no specific information
about the values within this interval. In this case, a rectangular (uniform) distribution is
assigned to each input quantity Ai [6, clause 4.3.7]. For this probability distribution, the
estimate of Ai and the standard uncertainty associated with this estimate are

bAi =
ai + bi

2
, u(bAi) =

bi − ai

2
p

3
.

The resulting estimates and standard uncertainties associated with these input quantities
are given in table 3.2.

Table 3.2: Estimates and standard uncertainties for the standard atomic weights of the elements
found in glucose

i Element bAi νi u(bAi) νiu(bAi)

1 hydrogen 1.00798 12 0.000 08 0.00094
2 carbon 12.0106 6 0.000 58 0.00346
3 oxygen 15.9994 6 0.000 21 0.00128

The estimate of the relative molecular mass of glucose is calculated as

ÒM = 6× 12.0106+ 12× 1.007 98+ 6× 15.9994= 180.1557.

The associated standard uncertainty is calculated from the contributions νiu(bAi) given in
the last column of table 3.2. The standard uncertainty is

u(ÒM) =
�

0.000 942 + 0.003 462 + 0.001282
�1/2
= 0.0038.

3.4 Discussion

3.4.1 This example highlights how an estimate and an associated standard uncertainty
can be evaluated from an atomic-weight interval. The probability density function chosen
depends on the assumptions made, and these usually depend on the information at hand.
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Estimates and standard uncertainties thus derived for the three elements in question are
independent of the isotopic composition and valid for any material that conforms with
the description of a normal material of International Union of Pure and Applied Chemistry
(IUPAC) [22, 117].

3.4.2 The use of the rectangular distribution underlines the lack of detailed information
concerning the isotopic composition [89, 110] and is in agreement with earlier reports
on the standard atomic weights [115, 116]. By no means can this choice of probability
distribution be understood as depicting the actual isotopic composition. Rather, it depicts
the state of knowledge about the composition, which is in this example very modest. The
efforts of IUPAC in investigating the isotopic composition of elements in normal materials
focus very much on establishing the interval end points, rather than modelling the isotopic
composition of elements across materials [22]. The use of the rectangular distribution in
connection with the standard atomic weights is not always sufficiently accurate to ignore
completely the effects of the uncertainty associated with the relative molecular masses in a
further application, for example, the calculation of the composition of a mixture expressed
in amount-of-substance fractions [109].

3.4.3 Had the isotopic composition of the glucose been available, a more accurate value
for the relative molecular mass M could have been obtained [89]. The estimate and stan-
dard uncertainty obtained in this example are for this application and many others in
chemistry fully satisfactory and sufficiently accurate for further calculations [110]. With
increasing accuracy of measurements, there will be a growing number of applications for
which the approach to calculating relative molecular masses as outlined in this example
is inadequate. In such cases, a batch-specific mass-spectrometric determination of the iso-
topic composition of the given sample used in the application would be required to obtain
information about the isotopic composition of the elements in the material.

3.4.4 Calculations involving the standard atomic weights should be performed using the
latest values published for these. At the time of writing, the standard atomic weights from
2021 [93] were the current.
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4 Gravimetric mixture preparation and the calculation of com-
position

4.1 Preamble

4.1.1 This example demonstrates the uncertainty evaluation of the composition of a cal-
ibration gas mixture prepared by static gravimetry. It illustrates how data from weighing,
purity analysis and molar masses are combined, and how correlations between quanti-
ties are duly taken into account. The propagation of uncertainty is carried out using the
multivariate law of propagation of uncertainty (LPU) from JCGM 102:2011 [7].

4.1.2 Fundamental to the metrology of chemical composition is the preparation of mix-
tures having well-known composition from pure substances. These mixtures are often used
as reference materials for calibration. There are two principal ways for preparing such mix-
tures: gravimetric and volumetric. In this example, the gravimetric preparation of a gas
mixture is considered. The mixture is prepared from two high-purity gases: carbon diox-
ide and nitrogen. These gases have been checked for purity, so a correction can be applied
for the contents of the impurities present in the gases. The objective is to calculate the
amount fractions of the abundant components and their associated standard uncertainties
and covariances.

4.2 Measurement model

4.2.1 The composition of a gravimetrically prepared gas mixture is commonly expressed
in amount fractions, which are calculated as the ratio of the amount of component k (nk)
in the gas mixture by the sum of the amounts of all components in the mixture. In a slightly
amended notation, the measurement model of ISO 6142-1 [64] for the amount fraction of
a component k (k = 1 . . . q) in a gravimetric mixture of p parent gases is

yk =
nk

q
∑

k=1
nk

, where nk =
p
∑

j=1

m j xk j

MP, j
. (4.1)

where

yk denotes the amount fraction of component k in the mixture,

nk the amount of component k,

n the (total) amount of substance in the mixture,

m j the mass of parent gas j added to the mixture,

xk j the amount fraction of component k in parent gas j,

MP, j the molar mass of parent gas j

p the number of parents,

q the number of components in the mixture.

Expression (4.1) is an example of a multivariate measurement model. The the molar mass
of parent gas j, MP, j is determined by the chemical composition and the molar masses of
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its constituent components, Mk (k = 1 . . . q):

MP, j =
q
∑

k=1

xk j Mk. (4.2)

where

MP, j denotes the molar mass of parent gas j

xk j the amount fraction of component k in parent gas j,

Mk the molar mass of component k,

q the number of components in the mixture.

In the current example, there are two parent gases (p = 2) comprising eight components
(q = 8) comprised of e = 5 different chemical elements.

4.2.2 The weighing is performed using the substitution method [78, 109], where the
sample and reference cylinder are weighed alternately a number of times. The weighing
data are given in table 4.1. The same reference cylinder is used throughout the preparation
process. Its mass is not needed, as it cancels in the expressions for the masses of the parent
gases transferred into the sample cylinder.

Table 4.1: Readings of the balance for the sample and reference cylinders prior to filling
them (r0), after adding parent gas #1 (r1), and after adding parent gas #2 (r2)

Empty +CO2 +N2
Cylinder Òr0/g Òr1/g Òr2/g

Sample 7770.937 8016.473 8640.263
Reference 7922.962 7922.975 7922.992
Sample 7770.937 8016.471 8640.267
Reference 7922.961 7922.976 7922.994
Sample 7770.938 8016.469 8640.270
Reference 7922.962 7922.974 7922.995
Sample 7770.937 8016.470 8640.269
Reference 7922.961 7922.976 7922.996
Sample 7770.936 8016.472 8640.269

4.2.3 The chemical composition of the two parent gases is given in table 4.2. The amount
fraction of the most abundant component is calculated by difference, that is, by subtracting
the sum of the amount fractions of the other components from unity [109, 60]. The sub-
traction gives rise to non-zero covariances between this amount fraction and the amount
fractions of the minor components. It is noted that the standard uncertainty associated
with the amount fraction nitrogen in the nitrogen gas is only marginally larger than the
standard uncertainty associated with the amount fraction argon (the dominant uncertainty
component).
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Table 4.2: Chemical composition of the two parent gases expressed as amount fractions of
their components in µmol mol−1

Carbon dioxide gas Nitrogen gas

Component bx u(bx) bx u(bx)

Ar 5.0 3.0
CH4 0.10 0.06 0.008 0.005
CO 0.5 0.3 0.015 0.009
CO2 999 988.0 3.4 0.010 0.006
H2 0.025 0.015
H2O 1.9 0.1 0.010 0.006
N2 4.3 2.1 999 994.9 3.0
O2 5.3 2.6 0.005 0.003

4.3 Uncertainty evaluation

4.3.1 Correlations

The data in Tables 4.1 and 4.2 are used as estimates and associated standard uncertainties
of the corresponding quantities. There are correlations between the input quantities in the
measurement model (4.1). These correlations should be appreciated in the uncertainty
evaluation. First, there are correlations between the molar masses of the components.
For example, identical isotopic composition of oxygen in the components CO and CO2 is
assumed; mutual independence between the standard atomic weights is also assumed.
Second, the masses of the transferred parent gases are correlated because the weighings
are done sequentially (see table 4.1) and the estimates of both parent gas masses,

m(CO2) = r1 − r0 and m(N2) = r2 − r1,

are affected by the same r1. Last, the estimates of the impurity amount fractions in the
parent gases are correlated since the amount fraction of the most abundant component is
estimated by mass balance.

4.3.2 General considerations

4.3.2.1 The multivariate LPU in JCGM 102:2011 uses vectors and matrices. For the mea-
surement model (4.1) of ISO 6142-1, the vector of input quantities can be considered to
be partitioned into several input vectors, namely one containing the masses of the trans-
ferred parent gases m, another containing the molecular weights M , and a third with the
compositions of the parent gases x 1, . . . , x p.

4.3.2.2 Thus, all the input quantities can be represented by a vector a formed by “stack-
ing” the vectors m, M , x 1, . . . , x p:

a =





m
M
x



 , x =





x 1
...

x p



 . (4.3)

The covariance matrix V(ba) associated with the estimate ba of a holds the variances asso-
ciated with the elements of ba and the covariances between pairs of these elements.
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4.3.2.3 If there are no dependencies between the vectors m, M , and x , then V
ba can be

written in block matrix notation as follows:

V
ba = diag{V
Òm , V
cM , V
bx }. (4.4)

The construction of the covariance matrices V
Òm , V
cM , and V
bx is discussed briefly in

Clauses 4.3.3, 4.3.4, and 4.3.5, respectively. The method of construction is based on the
LPU from JCGM 102:2011 [7] considering multivariate sub-models.

4.3.3 Weighing data

4.3.3.1 The mass of a parent gas m j is given by the difference between the weighings
of a cylinder before and after adding the parent gas to it. Since the relationship between
these two observed quantities is linear, it can be expressed in a matrix notation as follows:

m = C r r , (4.5)

where

r is a vector of mass readings of sample cylinder shown in table 4.1,

m a vector of the masses of the parent gases,

C r the sensitivity matrix relating m to r .

The elements of r refer alternating to weighing the sample cylinder and the reference
cylinder. In this example, m is a vector of length p = 2. C r is a matrix of dimension
p× (p+ 1), which, in this case is as follows:

C r =

�

−1 1 0
0 −1 1

�

.

Using the LPU from JCGM 102:2011, the covariance matrix associated with Òm can be
evaluated as

V
Òm = C r V
br C⊤r .

where

C r denotes the sensitivity matrix relating m to r ,

V
br the covariance matrix associated with br ,

V
Òm the covariance matrix associated with Òm

4.3.3.2 As the mass measurementsÒr j ( j = 1 . . . p+1), shown in table 4.1, can be assumed
to be uncorrelated [109], the covariance matrix V

br is the diagonal matrix

V
br = diag
�

u2(br1), u2(br2), u2(br3)
	

,

where u2(br j) denotes the squared standard uncertainty associated with br j . Here we use
u(br) = 2mg is used for all weighings of the cylinders and we take the following mean
estimates of the mass measurements calculated from data in table 4.1:

br =
�

7770.937 g 8016.471 g 8640.268 g
�

.
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4.3.4 Molar masses

4.3.4.1 The molar masses are calculated from the standard atomic weights A and the
subscripts in the formulæ of the molecules involved [64, 109]. The vector M holding the
q molar masses of the parent gas impurities is given by the following matrix equation:

M = νA. (4.6)

where

M denotes the vector holding the molar masses of the q components in the final
mixture,

ν the matrix holding the coefficients in the q molecular formulæof the components,

A denotes the vector holding the e standard atomic weights of the elements occurring
in the components, as shown in table 4.4.

The subscripts in the molecule formulæ , presented in a q×e matrix ν, are constants, where
each row corresponds to a component of the prepared gas mixture and columns correspond
to different chemical elements, as shown in table 4.4.

4.3.4.2 The estimate cM of M is given by cM = νbA, where bA is the estimate of A. The
covariance matrix associated withcM is obtained by applying the LPU to equation (4.6):

V
cM = νV
bAν
⊤, (4.7)

where V
bA = diag
�

u2(bA1), . . . , u2(bAe)
	

. Here we assume the independence between the
standard atomic weights of the elements. This is an appropriate assumption with the
standard atomic weights, although not applicable generally to atomic weights in normal
materials (see clause 3.4.2) [89, 110].

4.3.4.3 Here we adopt the modelling assumption of treating all standard atomic weights
of the elements using a rectangular probability distribution whose bounds are provided
by International Union of Pure and Applied Chemistry (IUPAC) (see table 4.3). Recall
that a rectangular distribution R(a, b) with endpoints a and b (a < b) has an expectation
(a+ b)/2 and a standard deviation (b− a)/

p
12 [6, clause 4.3.7]. Guidance on the use of

atomic weights and assigning probability density functions (PDFs) is given in [89, 110].

Table 4.3: Standard atomic weights of the makeup elements for components in the two
parent gases

Element Distribution a b bA u(bA)

H R(a, b) 1.00784 1.008 11 1.007 98 0.000 08
C R(a, b) 12.0096 12.0116 12.0106 0.0006
N R(a, b) 14.00643 14.007 28 14.006 86 0.000 25
O R(a, b) 15.99903 15.999 77 15.999 40 0.000 21
Ar R(a, b) 39.792 39.963 39.878 0.049

4.3.4.4 Combining the subscripts in the molecule formulæ of the components and the
atomic weights of the elements (Eqs. 4.6 and 4.7) provides molecular weight estimates
which are summarised in table 4.4.
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Table 4.4: Atomic composition coefficients and molar masses of the components in the two
parent gases

Component ν(H) ν(C) ν(N) ν(O) ν(Ar) ÒM u(ÒM)

Ar 0 0 0 0 1 39.878 0.049
CH4 4 1 0 0 0 16.0425 0.0007
CO 0 1 0 1 0 28.0100 0.0006
CO2 0 1 0 2 0 44.0094 0.0007
H2 2 0 0 0 0 2.01595 0.00016

H2O 2 0 0 1 0 18.0154 0.0003
N2 0 0 2 0 0 28.0137 0.0005
O2 0 0 0 2 0 31.9988 0.0004

4.3.4.5 The covariance matrix V
cM is related with the correlation matrix R

cM in the fol-
lowing way [7, Definition 3.20, Note 3]:

V
cM = DR
cM D, (4.8)

where the matrix D is defined as

D = diag{u(ÒM1) . . . u(ÒMq)}.

Conversely, the correlation matrix is obtained from the covariance matrix as follows:

R
cM = D−1V
cM D−1. (4.9)

The covariance matrix V
cM is usually not full rank, as the formulæ used for computing

the molar masses can be linearly dependent (e.g., as in the case of the molar masses of
alkanes, which have as general molecular formula CnH2n+2 (n≥ 1)).

4.3.4.6 The upper triangular part of the correlation matrix R
cM is























1 0 0 0 0 0 0 0
1 0.825 0.707 0.475 0.280 0 0

1 0.960 0 0.280 0 0.347
1 0 0.481 0 0.595

1 0.589 0 0
1 0 0.808

1 0
1























.

We observe a large correlation (0.960) between the third and fourth components, CO
and CO2, whereas the second-largest correlation (0.825) is between the molar masses
of the second and third components, CH4 and CO.

4.3.5 Composition of the parent gases

4.3.5.1 When preparing a gas mixture, the composition of the parent gases plays an
important role and one can consider three distinct scenarios [109]:

1. The parent gas is a near-pure gas whose impurities have been characterized;

2. The parent gas is a gravimetrically prepared gas mixture;

3. All components in the parent gas have been analysed.
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4.3.5.2 In all cases, the covariance matrix V
bx j

of the amount fractions in each parent gas
is not diagonal [109]. Due to the fact that the amount fractions of all components in the
parent gas mixtures add up to unity, these covariance matrices are always singular [2].

4.3.5.3 The covariance matrix V
bx associated with the vector bx is block diagonal when

working with near-pure gases, i.e., V
bx = diag
¦

V
bx 1

, . . . , V
bx p

©

. This situation can be dif-
ferent for a multistage gas mixture preparation, for there exist correlations between the
composition of a parent gas and the molar masses. Furthermore, there can be correlations
between the composition of two or more parent gases.

4.3.5.4 In this example we consider the scenario where all impurity components have
been independently characterized and the amount fraction of the main component esti-
mated by difference. In such a scenario, the covariance between the calculated (major)
component xcalc and any other impurity amount fraction x i is V (xcalc, x i) = −u2(x i).

4.3.6 Composition of the gas mixture

4.3.6.1 Consider a vector n, containing the amounts of the components and their total
amount in the mixture. That is, n⊤ = (n1, . . . , nq, nmix). From this vector, one can compute
the vector y that is the amount fractions of the individual components in the gas mixture.
The sensitivity matrices are obtained with respect to the vector n. The expression for U(bn)
is

U
bn = C aU
baC⊤a , (4.10)

where C a can be written in block matrix notation as

C a =
�

C m C M C x 1
. . . C x p

�

.

4.3.6.2 The matrices C m , C M , C(x j) hold the sensitivity coefficients of all input param-
eters. The expressions for the elements of these matrices have been derived elsewhere
[109]. The sensitivity matrix C m of dimension (q+ 1)× p is obtained as follows:

C m =





















x11

MP,1

x12

MP,2
. . .

x1p

MP,p
...

...
...

...
xq1

MP,1

xq2

MP,2
. . .

xqp

MP,p
1

MP,1

1
MP,2

. . .
1

MP,p





















,

where MP, j is the average molar mass of a parent gas j, as given by equation (4.2). Simi-
larly, the sensitivity matrix C M of dimension (q+ 1)× q is obtained as follows:

C M = −























∑p
j=1

x1 jm j

M2
P, j

x1 j . . .
∑p

j=1

x1 jm j

M2
P, j

xq j

...
...

...
∑p

j=1

xq jm j

M2
P, j

x1 j . . .
∑p

j=1

xq jm j

M2
P, j

xq j

∑p
j=1

m j

M2
P, j

x1 j . . .
∑p

j=1

m j

M2
P, j

xq j























,
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and the sensitivity matrix C x j
of dimension (q+ 1)× q is given as follows:

C x j
= −

m j

M2
P, j













x1 j M1 −MP, j x1 j M2 . . . x1 j Mq
x2 j M1 x2 j M2 −MP, j . . . x2 j Mq

...
...

...
...

xq j M1 xq j M2 . . . xq j Mq −MP, j
M1 M2 . . . Mq













.

4.3.6.3 The propagation of the uncertainty associated with the amount fraction of the
components to the amount fractions can be carried out as follows. The covariance ma-
trix V
by associated with the vector by of estimates of the amount fraction fractions of the q

components in the mixture is calculated from the covariance matrix V
bn associated with bn

using

V
by = CnV
bnC⊤n . (4.11)

The sensitivity matrix Cn of dimension q× (q+ 1) is given in block matrix notation by

Cn =
�

n−1
mixI −n−2

mixn
′ � , (4.12)

where I denotes the identity matrix of dimension q× q and n′ = (n1, . . . , nq)⊤. By substi-
tuting equation (4.10) for V

bn into equation (4.11), V
by can be computed from V

ba:

V
by = CnC aV

baC⊤a C⊤n . (4.13)

The use of the chain rule of differentiation is implemented here by means of a matrix
multiplication, which can be readily verified [109].

4.3.6.4 The covariance matrix V
by associated with a complete composition by is singular,

as the amount fractions of the components sum to unity [2].

4.3.6.5 The results for the amount fractions for the mixture are given in table 4.5. The
upper triangular part of the correlation matrix for the chemical composition of the gas
mixture R
by is























1 0.00 0.00 0.04 0.00 0.00 −0.50 0.00
1 0.00 0.00 0.00 0.00 0.00 0.00

1 −0.01 0.00 0.00 0.00 0.00
1 0.00 0.00 −0.86 −0.08

1 0.00 0.00 0.00
1 0.00 0.00

1 −0.02
1























.

The correlation matrix associated with the composition of the gas mixture shows that most
correlations between pairs of amount fraction are rather weak; only the correlations be-
tween the amount fractions of argon and nitrogen (−0.50), and between carbon dioxide
and nitrogen (−0.86) have appreciable influence. The joint PDF of the latter is shown in
figure 4.1.

NOTE Due to round-off effects, the covariance matrix corresponding to the correlation matrix R
by

can appear to be non-singular. The covariance matrix V
by is however singular.
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Figure 4.1: Contour plot of the bivariate normal probability density function for N2(y7)
and CO2(y4) amount fractions in the gas mixture with contours corresponding to 68 %,
95 %, 99 % and 99.9 % coverage probability

Table 4.5: Chemical composition of CO2 and N2 mixture expressed in amount fractions
and their associated standard uncertainties

Component by/ u(by)/ urel(by)/
µmol mol−1 µmol mol−1 %

Ar 4.0 2.4 60
CH4 0.026 0.013 48
CO 0.112 0.061 54
CO2 200 346 5 0.003
H2 0.020 0.012 60
H2O 0.389 0.021 5
N2 799 648 5 0.0006
O2 1.07 0.52 49

4.4 Discussion

This example illustrates some of the advantages of using the multivariate form of the
LPU (JCGM 102:2011). First, the LPU does not only provide the variances associated
with the estimates of the various output quantities but also their covariances. Second,
the multivariate modelling aids in structuring the model in a fashion that can be readily
implemented. Important submodels are the formation of the covariance matrices of the
transferred masses, molar masses, and the composition of the parent gases. The use of
multivariate modelling is particularly useful in describing multi-stage gas mixture prepa-
ration.
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5 Greenhouse gas emission inventories

5.1 Preamble

5.1.1 General

5.1.1.1 The compilation of country-scale greenhouse gas emissions’ inventories involves
combining standard emissions’ factors and activity data to provide sector emissions’ esti-
mates. This example constitutes a small study of this huge, impactful topic, concentrating
on agriculture, where large uncertainties arise, and the effect of correlation on the results.
It also gives a brief comparison of the attitudes taken to uncertainty evaluation by the In-
tergovernmental Panel on Climate Change (IPCC) and the Joint Committee for Guides in
Metrology (JCGM).

5.1.1.2 Greenhouse gas (GHG) emissions’ inventories are usually obtained by combining
standard emissions’ factors and activity data to provide sub-sector emissions’ estimates.
These sub-sectors are then combined to give sector estimates and further combined to
estimate total emissions.

5.1.1.3 A specific example is given relating to part of the inventory in the agriculture,
land use and waste sector to provide an estimate of total emissions and the associated
uncertainty.

5.1.1.4 Current practice provided by the IPCC regarding uncertainty propagation in the
area is considered in the context of the IPCC Guidelines for National Greenhouse Gas
Inventories [56]. The IPCC practice is contrasted with that in the Guide to the expression
of uncertainty in measurement (GUM) [6] and other related JCGM guides. In particular,
the possible effects of correlation, often ignored in practice, on the estimate are considered.

5.1.2 Greenhouse gas inventories

5.1.2.1 GHG inventories of the United Kingdom (UK) and other countries are compiled
according to IPCC 2006 Guidelines [56]. Each year the inventory is updated to include
the latest data available. Together with many other countries, the UK submits a report to
the United Nations Framework Convention on Climate Change (UNFCCC) annually via a
consolidated report, which contains all EU countries.

5.1.2.2 The GHG inventory includes seven gases under the Kyoto Protocol, namely, car-
bon dioxide (CO2), methane (CH4), nitrous oxide (N2O), hydrofluorocarbons (HFCs), sul-
fur hexafluoride (SF6), perfluorocarbons (PFCs) and nitrogen trifluoride (NF3).

5.1.2.3 A bottom-up calculation of emissions is based on contributions of the form

Emissions = (Activity data) × (Emissions’ factor). (5.1)

In all there are 743 emission factors and more than 1700 sources of emissions. There are 17
key data sources together with involvement from industry, government and academics.
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5.1.2.4 In terms of emissions from the three largest GHG contributors — CO2, CH4
and N2O — the majority of the uncertainty in the GHG inventory comes from the agri-
culture, land use and waste sectors [17], with these three sectors contributing nearly 90 %
of the uncertainty in the total inventory emissions.

5.1.2.5 European countries, especially the UK, are moving towards metrological assess-
ment of current uncertainty quantification including accounting for the effect of correlated
quantities. They also want to extend the current top-down validation activity [3] to cover
the complete GHG inventory.

5.1.2.6 Figure 5.1 shows the breakdown of the inventory contributions across sectors.
The fifth biggest contribution is agriculture. As reductions in other contributions are made,
somewhat more readily, agriculture will in future make a larger proportional contribution.

Power
Transport

Industry
Residential buildings

Agriculture
Land use change

Non−residential buildings
Waste

F−gases

Relative contribution / %

0 5 10 15 20

Figure 5.1: Inventory contributions across sectors

5.1.2.7 An emission inventory can be expressed as a linear combination of terms of the
form (5.1):

E =
∑

i

FiAi , (5.2)

with

E: total GHG emission for a given sector, geographic area and time period,
Fi: emissions’ factor for the emissions of a given pollutant from source category i,
Ai: activity for source category i.

5.1.2.8 In practice, the model (5.2) is often enlarged to incorporate scaling factors to al-
low total GHG emission to be given in terms of ‘CO2 equivalent’ (CO2e). That is, each GHG
in the table has a conversion or scaling factor associated with it, giving

E =
∑

i

si FiAi , (5.3)

An example incorporating such scaling factors is given in clause 5.4.
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5.1.3 Combination and correlation

5.1.3.1 Inventory uncertainties are generally combined in quadrature (root-sum-squares),
assuming no correlation between the input quantities involved, using the variant of the
law of propagation of uncertainty (LPU) applicable to such cases [6, clause 5.1.2, for-
mula (10)].

5.1.3.2 Figure 5.2 shows the expanded uncertainty contributions across sectors with agri-
culture being one of the biggest contributors.

Power
Transport

Industry
Residential buildings

Agriculture
Land use change

Non−residential buildings
Waste

F−gases

Uncertainty contribution / Mt(CO2e)

0 2 4 6 8 10

Figure 5.2: Expanded uncertainty contributions (at the 95 % level) across sectors

5.1.3.3 Emissions’ inventories are critical to many environmental decision-making pro-
cesses [13]. Typical questions that decision makers may ask that motivate the need to deal
with uncertainties in emissions’ inventories relate to precision and bias in the estimates,
whether the estimates are based upon measurement, modelling or expert judgment, the
main sources of uncertainty in these estimates, and how uncertainty can be reduced. To
answer such questions, a reasonable indication of the uncertainty associated with the esti-
mates of the quantities Fi , Ai and E in expression (5.3) that comprise an emission inventory
is needed.

5.1.4 IPCC and JCGM reporting guidelines

5.1.4.1 The IPCC reporting guidelines refer to the ‘error propagation approach’ and the
‘Monte Carlo approach’ for uncertainty propagation. An extract from [57], which uses
these approaches, is:

‘Comparing the results of the error propagation approach, and the Monte Carlo
estimation of uncertainty by simulation, is a useful quality control check on the
behaviour of the Monte Carlo model.

‘The reason that the error propagation approach is used as a reference is be-
cause the approach to the error propagation approach has been defined and
checked by the IPCC, and is clearly set out in the IPCC 2000 Good Practice
Guidance and the 2006 Guidelines.’

5.1.4.2 In this example, the IPCC approach to uncertainty evaluation in the context of
greenhouse gas emissions is considered. Statements are made concerning the extent of
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the alignment with guidance provided by the JCGM. Wherever measurement uncertainty
is used, it is important that it is evaluated in the same manner by different practitioners
so that users’ interpretation is consistent and reliable. Universally agreed methods for
uncertainty evaluation are hence required.

5.2 Specification of the measurand

A meaningful interpretation of the measurand, used here, is ‘total emissions for a given
pollutant, geographic area and time period’ (see clause 5.1).

5.3 Measurement model

The IPCC does not seem explicitly to use the concept of ‘measurement model’ in their
documents. However, expression (5.3) can be regarded as a basic measurement model
central to IPCC considerations.

5.4 Uncertainty propagation

5.4.1 The use of the model specified as expression (5.3), in which we take the sector
as mobile machinery in agriculture (IPCC category A4ci), the region as the UK and the
time period as 2018, is considered. Uncertainties are propagated using the law of propa-
gation of uncertainty in JCGM 100:2008 [6], comparable to the IPCC’s ‘error propagation’
method. The quantities concerned are taken as independent. Then, perceived correlation
is considered.

5.4.2 Data for this sector from the UK National Atmospheric Emissions Inventory site
(2018) are given in table 5.1 where the number of significant decimal digits is stated as
reported. This total comprises contributions from the use of two fuels, ‘Gas Oil’ and Petrol,
reported in terms of the 2018 Activity Data (the Ai) for those fuels. The table also specifies
the Emissions’ Factors (the Fi) for each of the key GHGs (CO2, CH4 and N2O) for those
fuels. The reported expanded uncertainties Urel (at the 95 % confidence level) on the
individual activity data and emission factors are given.

5.4.3 This table incorporates the scaling mentioned in clause 5.1.2. The scaling factors
to give ‘CO2 equivalent’ equivalent emissions are s = 11/3 = 3.667 for CO2 as C, s = 25
for methane (CH4) and s = 298 for nitrous oxide (N2O).

Table 5.1: Reported activity data and emissions’ factors with associated relative expanded
uncertainties for 95 % confidence

Fuel Gas Ai/(TJ) Urel(Ai)/% Fi/(ktTJ−1) Urel(Fi)/%

Gas oil CO2 56 317.0920 38.6 2.0438× 10−2 2.7
Gas oil CH4 56317.0920 1.6 3.5368× 10−6 80.0
Gas oil N2O 56 317.0920 1.6 3.0984× 10−6 216.3
Petrol CO2 67.1856 50.7 1.9127× 10−2 2.0
Petrol CH4 67.1856 1.6 4.8654× 10−5 80.0
Petrol N2O 67.1856 1.6 3.3578× 10−7 216.3
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5.4.4 Since A1, . . . , A6 denote the activity data values and F1, . . . , F6 the corresponding
emissions’ factors in table 5.1 in the order given there, comparing with expression (5.3),

E =
6
∑

i=1

Ei =
6
∑

i=1

siAi Fi , (5.4)

where the si are the scaling factors, assumed to have no associated uncertainty.

5.4.5 Total emissions for this sector were reported to be 4282 kt CO2e. The reported
expanded uncertainty (at the 95 % level of confidence) associated with this total was
1635 kt CO2e (relative expanded uncertainty of 38 %).

5.4.6 Table 5.2 summarizes the emissions’ calculations for this sub-sector, namely, the
emissions as CO2 equivalent for each contribution and the total CO2 equivalent, obtained
from the UK National Atmospheric Emissions Inventory site (2018).

Table 5.2: Emissions as CO2 equivalent for each contribution and the total CO2 equivalent

GHG Fuel Reported Scaling CO2e/
emissions/kt factor kt

CO2 as C Gas oil 1150.9806 3.667 4220.2623
CH4 Gas oil 0.1992 25 4.9795
N2O Gas oil 0.1745 298 51.9987

CO2 as C Petrol 1.2851 3.667 4.7120
CH4 Petrol 0.0033 25 0.0817
N2O Petrol 0.0000 298 0.0067

Total 4282.0409

The application of the LPU [6, eqn. (10)] for independent quantities gives the associated
standard uncertainty uind(E):

u2
ind(E) =

6
∑

i=1

s2
i

�

A2
i u

2(Fi) + F2
i u2(Ai)
�

. (5.5)

The use of the data in tables 5.1 and 5.2 gives E, as above, and by applying expression (5.2),

E = 4282.04 kt, uind(E) = 835.16kt. (5.6)

The uncertainty budget is given in table 5.3.

5.4.7 Perceived correlations associated with the various quantities, which seem not to be
strongly considered in the IPCC documents, are now considered. It appears that correlation
is not entertained with the ‘error propagation’ approach, although it is stated, without
giving detail, that the Monte Carlo method may be used for this purpose [55, clause 6.3].
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Table 5.3: Uncertainty budget

GHG Fuel CO2e std. unc./kt

CO2 as C Gas oil 833.1844
CH4 Gas oil 2.0329
N2O Gas oil 57.3860

CO2 as C Petrol 1.2198
CH4 Petrol 0.0334
N2O Petrol 0.0074

Total CO2e std. unc./kt 835.16

5.4.8 Examining the activity contributions in table 5.1, A2 and A3 are identical numeri-
cally as are their associated standard uncertainties u(A2) and u(A3). A similar statement
applies to A5 and A6 and their associated standard uncertainties. This observation raises
the possibility that A2 and A3 have a common origin and might even be the same quantity,
and similarly for A5 and A6. In discussion with GHG experts, this perception is considered
to be more than reasonable.

5.4.9 Assuming this perception to be correct, an adjustment to the above uncertainty
calculation is needed. When several input quantities are associated via a common origin
or effect, the resulting correlation can typically be handled either by constructing and using
an appropriate covariance matrix, or by re-parametrizing to isolate the common effect. In
this case, whether the (numerically identical) activities A2 and A3, and A5 and A6, are
either very highly correlated or are simply repeated use of the same information, it is
simplest to re-parametrize by replacing the nominally separate instances by a single term.
So, taking A2 and A3 as the same quantity, and similarly for A5 and A6, instead of the
model (5.3), we consider the model

E = s1A1F1 + A2 (s2F2 + s3F3) + s4A4F4 + A5 (s5F5 + s6F6) .

For the current data, E is identical to the previously calculated value, as expected and,
applying LPU, since the si are constants,

u2
cor(E) =
∑

i=1,4

s2
i

�

A2
i u

2 (Fi) + F2
i u2 (Ai)
�

+
∑

i=2,5

�

A2
i

�

s2
i u2 (Fi) + s2

i+1u2 (Fi+1)
�

+ (si Fi + si+1Fi+1)
2 u2 (Ai)
	

, (5.7)

that is,

ucor(E) = 835.16kt, (5.8)

the same value to the number of decimal digits displayed as obtained when not taking
correlation into consideration. Algebraically, however, using expressions (5.5) and (5.7),

u2
cor(E)− u2(E) = 2s2F2s3F3u2(A2) + 2s5F5s6F6u2(A5), (5.9)

which is positive and demonstrated by displaying u2(E) and u2
cor(E) to a greater number of

decimal places. This result suggests that considering correlation is not meaningful for such
calculations. However, we present rationale why accounting for covariance in emissions’
calculation is generally appropriate.
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5.4.10 The reason for the increase in the standard uncertainty associated with total emis-
sions being so small is that one particular contribution to the budget, CO2 as C for Gas oil,
the first in table 5.2, is by far the most dominant. This effect has the consequence that the
consideration of correlation is unnecessary in this example.

5.4.11 The principle stands that such correlations should generally be taken into account
since they might make a significant difference where one uncertainty contribution is less
dominant. It would be appropriate to identify an instance where the contribution of the
different sub-sectors is more balanced and the effect of correlation therefore more pro-
nounced.

5.4.12 It would be possible to handle the uncertainty propagation using [6, formula (13)]
taking correlation into account for the quantities concerned. The use of variable substitu-
tion as above reparametrizes the problem in such a way that the need to take correlation
directly into account is avoided. The assumption is made that the remaining quantities are
independent, which should be verified in practice to the extent possible.

5.4.13 Insight into the difference in the standard uncertainty in the measurand under the
assumptions of independence and dependence (in the above respect) is given by taking an
extreme case.

5.4.14 Consider the following idealized scenario. For all i, take Ai = A, Fi = F , u(Ai) = uA,
u(Fi) = uF and si = s. Then, expression (5.5) becomes

u2
ind(E) = 6s2A2u2

F + 6F2s2u2
A = s2A2F2
�

6u2
rel(F) + 6u2

rel(A)
�

(5.10)

with relative standard uncertainties

urel(F) =
uF

F
, urel(A) =

uF

A
.

On the other hand, from expression (5.7),

u2
cor(E) = 6s2A2u2

F + 18F2s2u2
A = s2A2F2
�

6u2
rel(F) + 18u2

rel(A)
�

. (5.11)

The quotient of the terms in square brackets in expressions (5.10) and (5.11), namely,

λ=
u2

cor(E)

u2
ind(E)

=
6u2

rel(F) + 18u2
rel(A)

6u2
rel(F) + 6u2

rel(A)
=

u2
rel(F) + 3u2

rel(A)

u2
rel(F) + u2

rel(A)
, (5.12)

is informative regarding the respective contributions from the emissions’ factor and the
activity data under the above correlation and independence assumptions. Examining ex-
pression (5.12), for an activity data relative uncertainty that is small compared with that
for the emissions’ factor, λ is close to unity and in that case the assumption of independence
is reasonable. For the converse, λ is close to 3 with the consequence that, accounting for
correlation, ucor(E) is

p
3≈ 1.7 times uind(E), a 70 % increase. We emphasize that such an

increase is optimistic. For such cases, where better balanced data in terms of the values of
the quantities involved is available, the expected increase is bounded by 70 %.
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5.5 Interpretation of results

5.5.1 Relative expanded uncertainties of 100 % or more are not uncommon in emissions’
inventories, which is why it is important these large uncertainty sources are carefully taken
into consideration. The UK introduction to GHG inventories [96], shows a highly asym-
metric interval for inventory N2O figures, in that emissions’ estimates for N2O are far from
the centre of their 95 % confidence intervals, in its figure 5.2. The implication is that the
probability distributions for N2O are strongly asymmetric, but in the previous clause (5.1)
of that document uncertainties are expressed as 95 % confidence intervals (for example,
table 5.1), with no indication that they may be asymmetric.

5.5.2 Some areas within emissions’ inventories are so uncertain that it is not known
with confidence whether they are sources or sinks. However, the referenced figure implies
that N2O from agriculture is definitely a source so the probability distribution must be
asymmetric. However, the report does not provide an explanation for the figure.

5.5.3 After some investigation, these aspects seem to be based on methodology described
in Milne et al. [77]. Figure 2 in that paper shows the distribution given by Monte Carlo
modelling and the asymmetry is attributed to skew in the emissions’ factors. Log-normal
probability distributions are used to represent knowledge of such quantities.

5.5.4 However, reference [77] is focused on agricultural emissions (that is, manure, en-
teric fermentation and field burning), but table 5.1 in this document is based on non-road
vehicle emissions (that is, from tractors, combine harvesters, etc.), which burn gas-oil and
diesel. No information has been found by the authors of this chapter on the probability
distributions for the quantities under consideration here.

5.5.5 The focus here is on an agricultural sub-sector where there was sufficient data
publicly available to carry out this type of assessment. The correlation issue seems more
significant within other agricultural sub-sectors but the raw data needed to test this was
not available. It is understood that such data and more extensive information concerning
the numbers appearing in the UK inventory, from which correlations can be quantified, will
subsequently be made available.

5.6 Uncertainty guidance promoted by the IPCC and the JCGM

5.6.1 In terms of regarding expression (5.3) as the measurement model, JCGM 100:2008
[6] refers to the Fi and Ai as input quantities and E as the output quantity or measurand.
In the model (5.3), the expression on the right-hand side constitutes the measurement func-
tion, with sensitivity coefficients given by the first-order partial derivatives of that function.
IPCC documents seem not to emphasize that propagation of uncertainty should be carried
out in the context of a measurement model. It is only by using measurement models as a
basis, that measurement uncertainty evaluation can properly be conducted.

5.6.2 The IPCC 2000 Good Practice Guidance [100] and the 2006 Guidelines [56] set
out the ‘error propagation approach’ referred to as the LPU in the GUM [6]. For example,
the LPU occurs specifically in [55, clause 6.3, formula (6.3)].
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5.6.3 The attitude of the JCGM is that the Monte Carlo method (MCM), as described by
JCGM 101:2008 and JCGM 102:2011 [12, 7], is better suited to handle situations where
the uncertainties are large and the measurement model is non-linear. In contrast, the error
propagation approach (the LPU in JCGM 100:2008 [6]) can produce invalid uncertainty
statements. Thus, MCM can be used as a reference against which other methods can be
assessed such as the evaluation of LPU, which requires linearization of the model. This
way of thinking is very different from that of the IPCC, which regards the error approach
as a reference. Indeed, MCM is seen, at least by some Bayesian statisticians, as a ‘gold
standard’ for uncertainty propagation: Huggins et al. [53] state:

‘Classical Monte Carlo methods . . . remain the gold standard for approximate
Bayesian inference because they have a robust finite-sample theory and reliable
convergence diagnostics.’

There are many other references (such as [33, 52, 88, 101]) to the Monte Carlo method as
a ‘gold standard’ for uncertainty propagation. In addition, non-pathological examples are
well documented to show disagreement of the results produced by the two approaches.
One example in mass calibration, from JCGM 101:2008 [12], shows that the LPU can
underestimate the standard uncertainty by some 40 % compared to the MCM.

5.6.4 Within the context of its GHG emissions’ inventory, the UK has implemented the
error propagation approach as set out in its guidance. It is stated:

‘Uncertainty estimation by simulation (MCM) cannot be prescriptive, and will
depend on how the country constructs its model and the correlations consid-
ered. Therefore, ‘there is a greater likelihood of errors being introduced in the
model used to estimate uncertainty by Monte Carlo simulation’.

5.6.5 JCGM 101:2008 provides a different view on the matter [12]:

‘Whereas there are some limitations to the JCGM 100:2008 uncertainty frame-
work (GUF), the propagation of distributions [implemented by Monte Carlo]
will always provide a PDF for the output quantity that is consistent with the
model of the measurement and the PDFs for the input quantities.’

A comparison of MCM and the GUF is possible if the means and standard deviations of the
probability distributions used by MCM are taken as the estimates and associated standard
uncertainties used by LPU. There is no choice in the model itself. Both approaches use ex-
actly the same model but, as stated, LPU linearizes it. Rather than errors being introduced
by MCM, they will always be introduced by LPU unless the model is linear. Importantly,
the main model used in GHG inventory work is (5.3), which is non-linear.
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6 Simple linear measurement models

6.1 Preamble

6.1.1 This example considers the evaluation of uncertainty based on the simple linear
measurement model

Y = X1 + · · ·+ XN . (6.1)

when N = 4. The propagation of measurement uncertainty and the determination of
coverage intervals using the provisions of the JCGM 100:2008 [6] and the Monte Carlo
method (MCM) are shown. MCM is used to validate the application of JCGM 100:2008.
Standard uncertainties are reported to three significant decimal places to facilitate their
comparison.

6.1.2 A special case of the generic linear model is considered for three different sets
of probability density functions (PDFs) gXi

(x i) assigned to the input quantities X i , which
are all regarded as independent. The input quantities X i and hence the output quantity Y
are all dimensionless in this example. For the first set, each gXi

(x i) is a standard nor-
mal PDF (with X i having expectation zero and standard deviation unity). For the second
set, each gXi

(x i) is a rectangular PDF, also with X i having expectation zero and standard
deviation unity. The third set is identical to the second except that the PDF for gX4

(x4) has
a standard deviation of ten.

NOTE 1 Further information concerning linear models, such as the model (6.1), where the PDFs
are normal or rectangular or a combination of both, is available [38].

NOTE 2 In accordance with JCGM 100:2008, for each instance, a probabilistically symmetric 95 %
coverage interval for Y is based on a normal distribution with mean taken as the value of Y eval-
uated at the estimates of the input quantities and standard deviation as the evaluated standard
uncertainty.

6.2 Normally distributed input quantities

6.2.1 A standard normal PDF is assigned to each X i . Thus, the estimates of the X i
are x i = 0, i = 1,2, 3,4, with associated standard uncertainties u(x i) = 1.

6.2.2 The law of propagation of uncertainty (LPU) [6, clause 5.1.2] gives the standard
uncertainty u(y) = 2.00 associated with the estimate y = 0.00 of Y , using a numerical
tolerance of two significant decimal digits for u(y) [12, clause 7.9.2]. A probabilistically
symmetric 95 % coverage interval for Y is [−3.92, 3.92] based on a coverage factor of
k = 1.96. These results are given in the first (non-header) row of table 6.1.

6.2.3 The application of MCM [12, clause 7] with M = 105 trials and a numerical tol-
erance of δ = 0.05 gives the estimate y = 0.00, its standard uncertainty u(y) = 2.00 and
the probabilistically symmetric 95 % coverage interval [−3.92, 3.92]. See table 6.1, row
2. Two further applications of the method, with M = 106 trials, agree with these results
to within the numerical tolerance used. See table 6.1, row 2. These two further applica-
tions (different random samplings being taken from the PDFs) were made to demonstrate
variation in the results obtained.
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6.2.4 Two applications of the adaptive Monte Carlo procedure [12, clause 7.9] with the
use of a numerical tolerance of δ/5 as recommended in [12, clause 8.2] were then made,
taking 1.23× 106 and 1.02× 106 trials. See table 6.1, rows 3 and 4.

6.2.5 The PDF for Y obtained analytically is the normal PDF with expectation zero and
standard deviation two. See table 6.1, bottom row.

Table 6.1: Uncertainty evaluation for the linear model (6.1) with a standard normal PDF
assigned to each input quantity X i

Method M y u(y) Prob. sym. dlo dhi GUF validated
95 % cov. int. (δ = 0.05)?

GUF 0.00 2.00 [–3.92, 3.92]
MCM 105 0.00 2.00 [–3.92, 3.92]
MCM 106 0.00 2.00 [–3.92, 3.92]
MCM 106 0.00 2.00 [–3.92, 3.92]

Adaptive MCM 1.23× 106 0.00 2.00 [–3.92, 3.93] 0.00 0.01 Yes
Adaptive MCM 1.02× 106 0.00 2.00 [–3.92, 3.92] 0.00 0.00 Yes

Analytical 0.00 2.00 [–3.92, 3.92]

6.2.6 Figure 6.1 shows the (normal) PDF for Y resulting from the JCGM 100:2008 un-
certainty framework (GUF). It also shows one of the approximations (density histogram
of M = 106 model values of Y ) constituting a discrete representation of this PDF pro-
vided by MCM [12, clause 7.5]. The endpoints of the probabilistically symmetric 95 %
coverage interval provided by both methods are shown as vertical lines. The PDF and the
approximation are visually indistinguishable, as are the respective coverage intervals. For
this example, such agreement would be expected (for a sufficiently large numerical value
of M), because all the conditions hold for the application of the GUF [12, clause 5.7].

Output quantity/unit

P
ro

ba
bi

lit
y 

de
ns

ity
/u

ni
t−1

−6 −4 −2 0 2 4 6

0.
00

0.
05

0.
10

0.
15

0.
20

Figure 6.1: Approximations for the model (6.1), with each X i assigned a standard nor-
mal PDF, to the PDF for Y provided by (a) the GUF (black line), (b) MCM (density his-
togram, clause 6.2.6). The analytical solution here coincides with the GUF solution. “Unit”
denotes any unit
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The probabilistically symmetric 95 % coverage interval is determined, because the general
linear measurement model (6.1) with independent input quantities has the property that
the PDF for Y is symmetric when the PDFs for the X i are symmetric, which is proved as
follows. For random variables X1 and X2 having PDFs that are symmetric about zero, their
sum Y = X1+X2 is also symmetric about zero. To establish this result (a more complicated
proof appears in [94]), the PDF for gY is given by the convolution integral

gY (η) =

∫ ∞

−∞
gX1
(η− x2)gX2

(x2)dx2. (6.2)

To prove that gY (η) = gY (−η) for expression (6.2), using symmetry negate the arguments
of gX1

and gX2
, and setτ= −x2. Comparison with the right side of (6.2) proves the result in

this case. Observing that the result also applies for symmetry about nonzero expectations,
by induction the result holds for the more general model (6.1).

6.2.7 The validation procedures of [12, Clauses 8.1, 8.2] were applied. Using the ter-
minology of [12, clause 7.9.2], ndig = 2, since two significant decimal digits in u(y) are
sought. Hence, u(y) = 2.0 = 20× 10−1, and so c = 20 and ℓ = −1 in [12, clause 7.9.2,
item a)]. Thus, according to that clause, the numerical tolerance is δ = 1

2 × 10−1 = 0.05.
The magnitudes dlo and dhi of the endpoint differences [12, eqns. (19), (20)] are shown in
table 6.1, columns 6 and 7, for the two applications of adaptive MCM. Whether the GUF
has been validated for δ = 0.05 is shown in column 8.

6.3 Rectangularly distributed input quantities with the same width

6.3.1 Assign a rectangular PDF to each X i , so that X i has an expectation of zero and
a standard deviation of unity. The estimates of the X i are x i = 0 (i = 1,2, 3,4), with
associated standard uncertainties u(x i) = 1. By following the analogous steps to those in
clause 6.2, the results in table 6.2 were obtained.

Table 6.2: Uncertainty evaluation for the linear model (6.1), with each input quantity X i
assigned identical rectangular PDFs.

Method M y u(y) Prob. sym. dlo dhi GUF validated
95 % cov. int. (δ = 0.05)?

GUF 0.00 2.00 [–3.92, 3.92]
MCM 105 0.00 2.01 [–3.90, 3.89]
MCM 106 0.00 2.00 [–3.89, 3.88]
MCM 106 0.00 2.00 [–3.88, 3.88]

Adaptive MCM 1.02× 106 0.00 2.00 [–3.88, 3.89] 0.04 0.03 Yes
Adaptive MCM 0.86× 106 0.00 2.00 [–3.87, 3.87] 0.05 0.05 No

Analytical 0.00 2.00 [–3.88, 3.88]

The analytic solution for the endpoints of the probabilistically symmetric 95 % coverage
interval, namely, ±2

p
3[2− (3/5)1/4]≈ ±3.88, is obtained as described below.

The PDF of a rectangular distribution R(a, b) takes the constant value (b− a)−1 for a ≤ x ≤ b
and is zero otherwise. The n-fold convolution of R(0, 1) is the B-spline Bn(x) of order n
(degree n− 1) with knots 0, . . . , n [102] whose explicit expression is [25]

Bn(x) =
1

(n− 1)!

n
∑

r=0

nCr(−1)r(x − r)n−1
+ , (6.3)
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where nCr = n!/[r!(n− r)!] and z+ = max(z, 0). A piecewise cubic-polynomial repre-
sentation of B4(x) obtained from expression (6.3) or by applying the B-spline recurrence
relation in [25] is

B4(x) =
1
6



















x3, 0≤ x < 1,
4− 12x + 12x2 − 3x3, 1≤ x < 2,
−44+ 60x − 24x2 + 3x3, 2≤ x < 3,
(4− x)3, 3≤ x ≤ 4,
0, otherwise.

(6.4)

The left-hand endpoint ylo of the probabilistically symmetric 95 % coverage interval lies
between zero and one, because
∫ 1

0

B4(x)dx =
�

1
24

x4
�1

0
=

1
24

,

and 0.025= 1
40 <

1
24 . The area under the PDF that lies to the left of ylo is given by

∫ dL

0

B4(x)dx =
1
24

d4
L =

1
40

.

That is, dL = (3/5)1/4. By symmetry, the right-hand endpoint is dR = 4− (3/5)1/4. Thus,
the probabilistically symmetric 95 % coverage interval is
�

(3/5)1/4, 4− (3/5)1/4
�

or 2±
�

2− (3/5)1/4
�

.

The corresponding coverage interval for the four-fold convolution of the rectangular PDF
R(−
p

3,
p

3) (which has zero expectation and unit standard deviation) is given by shifting
this result by two units and scaling it by 2

p
3 units.

6.3.2 Figure 6.2 shows the counterpart of figure 6.1 in this case, again based on M = 106

trials and a numerical tolerance of δ = 0.05. By comparison with figure 6.1, some modest
differences between the approximations to the PDFs can be seen. Since normality of the
measurand is assumed, the GUF provides exactly the same PDF for Y when the PDFs for
the X i are normal or rectangular, because the expectations of these quantities are identical,
as are the standard deviations, in the two cases. The PDF provided by MCM takes smaller
values than that provided by the GUF in the neighbourhood of the expectation and to
a lesser extent towards the tails. It is slightly greater in the flanks. The endpoints of
the coverage intervals provided are again almost visually indistinguishable, but table 6.2
shows small differences.

6.3.3 The probabilistically symmetric 95 % coverage interval determined on the basis of
the GUF is in this case slightly more conservative than that obtained analytically. As for
normally distributed quantities, the validation procedure was applied (columns 6–8 of ta-
ble 6.2). As before, ndig = 2, u(y) = 20×10−1, c = 20, ℓ= −1 and δ = 0.05. The endpoint
differences dlo and dhi are larger than for the case of normally distributed quantities (ta-
ble 6.1). For the first of the two applications of the adaptive Monte Carlo method, the GUF
is validated. For the second application, it is not validated, although dlo and dhi for this
application are close to the numerical tolerance δ = 0.05 (seen if more decimal digits than
in table 6.2 are considered). Different validation results such as these are an occasional
consequence of the stochastic nature of the Monte Carlo method, especially in a case such
as that here.
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Figure 6.2: Counterpart of figure 6.1 for quantities having the same expectations and
standard deviations (clause 6.3.2), but distributed as rectangular PDFs. The black curve
corresponds to GUF, the scaled histogram represents the MCM result and the red curve
(close to the histogram) is the analytic solution

6.4 Rectangularly distributed input quantities with different widths

6.4.1 Consider the example of clause 6.3, except that X4 has a standard deviation of ten
rather than unity. Table 6.3 contains the results obtained.

6.4.2 The numbers M of Monte Carlo trials taken by the adaptive procedure (0.03×106

and 0.08×106) are much smaller than they were for the two previous cases in this example.
The main reason is that, in this case, δ = 0.5, the numerical tolerance resulting from
requesting, as before, two significant decimal digits in u(y), is ten times the previous value.
Were the previous value to be used, M would be of the order of 100 times greater.

Table 6.3: As table 6.2, except that the fourth input quantity has a standard deviation of
ten rather than unity, and no analytic solution is provided (clause 6.4.1)

Method M y u(y) Prob. sym. dlo dhi GUF validated
95 % cov. int. (δ = 0.5)?

GUF 0.0 10.1 [–19.9, 19.9]
MCM 105 0.0 10.2 [–17.0, 17.0]
MCM 106 0.0 10.2 [–17.0, 17.0]
MCM 106 0.0 10.1 [–17.0, 17.0]

Adaptive MCM 0.03× 106 0.1 10.2 [–17.1, 17.1] 2.8 2.8 No
Adaptive MCM 0.08× 106 0.0 10.1 [–17.0, 17.0] 2.9 2.9 No

6.4.3 Figure 6.3 shows the (normal) PDF for Y (black curve) resulting from the GUF. It
also shows a (scaled) histogram obtained from the MCM results. They differ appreciably
owing to the dominance of the PDF for X4. The PDF for Y resembles that for X4, but there
is an effect in the flanks resulting from the PDFs for the other X i . The PDF for Y , closely
resembling the histogram, is also shown as the red curve. It is based on an analytical
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solution for the distribution of the sum of n non-identically distributed uniform random
variables given in [79].
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Figure 6.3: Counterpart of figure 6.2, except that the fourth input quantity (X4) has a
standard deviation of ten rather than unity (clause 6.4.3). The black, bell-shaped curve
corresponds to GUF, the (scaled) histogram represents the MCM result, and the red line is
the analytical solution. Full and broken vertical lines denote the limits of the 95 % coverage
intervals for the GUF and analytical solution, respectively

6.4.4 The probabilistically symmetric 95 % coverage interval determined on the basis of
the GUF in this case is more conservative than that obtained using MCM. Again, the vali-
dation procedure was applied (columns 6–8 of table 6.3). Now, ndig = 2, u(y) = 10× 100,
c = 10, ℓ = 0 and δ = 1/2× 100 = 0.5. For the two applications of the adaptive Monte
Carlo procedure, the GUF is not validated. For a numerical tolerance of one significant
decimal digit in u(y), i.e. ndig = 1, for which δ = 5, the validation status would be positive
in both cases, the 95 % coverage intervals all being [−2× 101, 2× 101].

NOTE The conditions for the Central Limit Theorem (CLT) to apply are not well met in this
circumstance [6, clause G.6.5], because of the dominating effect of the rectangular PDF for X4.
However, because these conditions are often in practice assumed to hold, especially when using
proprietary software for uncertainty evaluation, the characterization of Y by a normal PDF on the
assumption of the applicability of this theorem is made in this clause for comparison purposes.
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7 Calibration of weights: second-order effects in uncertainty
evaluation

7.1 Preamble

This example illustrates the uncertainty evaluation of a mass calibration using the JCGM
100:2008 uncertainty framework (GUF) and the Monte Carlo method (MCM). The evalua-
tion using the measurement model and a simplification are compared. When applying the
law of propagation of uncertainty (LPU) as part of the GUF, two variants are used, that is,
the commonly used one considering only first-order terms (GUF1) and the one considering
both first- and second-order terms (GUF2).

7.2 Measurement model

7.2.1 Consider the calibration of a weight W, whose density is ρW, against a reference
weight R, whose density is ρR. The calibration is performed using a balance operating in
air whose density isρa. Both weights have the same nominal mass mnom = 100 g. SinceρW
and ρR are generally different, it is necessary to account for buoyancy effects [84]. This
example appeared originally in [12, clause 9.3].

7.2.2 Applying Archimedes’ principle, the measurement model takes the form

mW(1−ρa/ρW) = (mR+ δmR)(1−ρa/ρR), (7.1)

where δmR is the mass of a small weight of density ρR added to R to balance it with W.

7.2.3 The conventional mass mW,c of W is the mass of a (hypothetical) weight of den-
sity ρ0 = 8000kg/m3 that balances W in air at density ρa0

= 1.2 kg/m3 (these assigned
value have no associated uncertainty). Thus,

mW(1−ρa0
/ρW) = mW,c(1−ρa0

/ρ0).

7.2.4 In terms of conventional masses mW,c, mR,c and δmR,c, model (7.1) becomes

mW,c
1−ρa/ρW

1−ρa0
/ρW

= (mR,c + δmR,c)
1−ρa/ρR

1−ρa0
/ρR

(7.2)

or, to an approximation adequate for most practical purposes (ρW, ρR≫ ρa) [84],

mW,c = (mR,c + δmR,c)
�

1+ (ρa −ρa0
)
�

1
ρW
−

1
ρR

��

,

from which, introducing δm= mW,c−mnom, the measurement model used in this example
is eventually obtained:

δm= (mR,c + δmR,c)
�

1+ (ρa −ρa0
)
�

1
ρW
−

1
ρR

��

−mnom. (7.3)

7.2.5 Applying LPU to either the exact model (7.2) or the approximate model (7.3) is
made difficult by the algebraic complexity of the partial derivatives. It is easier to ap-
ply MCM because only model values need be formed.
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7.2.6 The only information concerning mR,c and δmR,c is an estimate and an associated
standard uncertainty for each of these quantities. Accordingly, normal distributions are
assigned to them, with estimates and standard uncertainties as expectations and standard
deviations, respectively [12, clause 6.4.7.1]. As for quantities ρa, ρW and ρR, only lower
and upper limits are known for each of these quantities. Accordingly, rectangular distribu-
tions are assigned to these quantities, with endpoints equal to the known limits [12, clause
6.4.2.1]. Table 7.1 summarizes the input quantities and their probability density functions
(PDFs). In the table, a normal distribution N(µ,σ2) is described in terms of expectation µ
and standard deviation σ, and a rectangular distribution R(a, b) with endpoints a and b
(a < b) in terms of expectation (a + b)/2 and half-width (b − a)/2 or standard devia-
tion (b− a)/

p
12.

Table 7.1: Input quantities and PDFs assigned to them for the mass calibration measure-
ment model (7.3)

Distribution parameters
Quantity Unit Distribution —————————————————–

Expectation Std. dev. Half-width

mR,c mg N(µ,σ2) 100 000.000 0.050
δmR,c mg N(µ,σ2) 1.234 0.020
ρa kg/m3 R(a, b) 1.20 0.10/

p
3 0.10

ρW kg/m3 R(a, b) 8000 1000/
p

3 1000
ρR kg/m3 R(a, b) 8000.00 0.05/

p
3 0.05

7.3 Uncertainty propagation

7.3.1 The GUF that considers only first-order terms (GUF1), applicable to uncorrelated
input quantities, corresponds to the following evaluations:

yGUF1 = f (x ), (7.4)

u2(yGUF1) =
N
∑

i=1

�

∂ f
∂ X i

�2

u2(x i), (7.5)

where x = [x1, . . . , xN ]⊤ and y = f (x ) denote the vector of estimates of the input quan-
tities X i , i = 1, . . . , N , and the corresponding estimate of the measurand Y , respectively.
Partial derivatives are evaluated at the estimates of the input quantities.

7.3.2 The GUF that considers first- and second-order terms (GUF2), applicable to un-
correlated and normally distributed input quantities, corresponds to the following evalua-
tions:

yGUF2 = yGUF1 +
1
2

N
∑

i=1

∂ 2 f

∂ X 2
i

u2(x i), (7.6)

u2(yGUF2) = u2(yGUF1) +
N
∑

i=1

N
∑

j=1

�

1
2

�

∂ 2 f
∂ X i∂ X j

�2

+
∂ f
∂ X i

∂ 3 f

∂ X i∂ X 2
j

�

u2(x i)u
2(x j).

(7.7)
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Formulæ (7.6) and (7.7) form a self-consistent pair since, as stated in [72], they are both
based on the third-order Taylor expansion of the measurement function f (X). The use of
the estimate (7.4) in conjunction with formula (7.7), as in [6, clause 5.1.2], represents
inconsistent working, since it is biased, not taking higher-order terms into consideration.

7.3.3 The GUF and the adaptive MCM [12, clause 7.9] were each used to obtain an esti-
mateÓδm of δm, the associated standard uncertainty u(Óδm), and the shortest 95 % coverage
interval for δm. The results obtained are shown in table 7.2. There, the GUF1 and GUF2
estimates of δm are equal since the partial derivative for the second-order effect is zero in
this instance.

Table 7.2: Results of the calculation stage for the mass calibration model (7.3), δm

Method Óδm u(Óδm) Shortest 95 % GUF validated
/mg /mg coverage interval/mg (δ = 0.005)?

GUF1 1.2340 0.0539 [1.1285, 1.3395] No
MCM 1.2340 0.0755 [1.0843, 1.3838]
GUF2 1.2340 0.0750 [1.0870, 1.3810] Yes

7.3.4 A total of 0.72 × 106 trials were taken by the adaptive MCM [12, subclause 7.9]
with the use of a numerical tolerance of δ/5 [12, subclause 8.2] with δ set for the case
where one significant decimal digit in u(Óδm) is regarded as meaningful.

7.3.5 Figure 7.1 shows the approximations to the PDF for δm obtained from GUF1
and MCM. The continuous curves represent a normal PDF with parameters given by the GUF.
The inner pair of (broken) vertical lines indicates the shortest 95 % coverage interval for δm
based on this PDF.

The histogram is the scaled frequency distribution obtained using MCM as an approxima-
tion to the normal distribution provided by the GUF. The outer pair of (continuous) vertical
lines indicates the endpoints of the shortest 95 % coverage interval for δm based on the
discrete representation of the distribution function determined as in [12, subclause 7.5].

7.3.6 Although GUF1 and MCM both give estimates of δm in good agreement, the associ-
ated standard uncertainties are noticeably different. The value of u(Óδm) returned by either
MCM or GUF2 is 40 % larger than that returned by GUF1. The latter method is therefore
understating the uncertainty associated withÓδm.

7.3.7 Table 7.2 also shows in the right-most two columns the results of applying the
JCGM 101:2008 validation procedure [12, clause 8] in the case where one significant deci-
mal digit in u(Óδm) is regarded as meaningful. Since a numerical tolerance of one significant
decimal digit in u(Óδm) is required, ndig = 1. Hence, u(Óδm) = 0.08mg= 8× 10−2 mg, and
so the c in [12, subclause 7.9 item a)] equals 8 and ℓ= −2. Thus δ = 1/2×10−2 = 0.005.
Whether the results were validated to one significant decimal digit in u(Óδm) is indicated
in the final column of the table. Thus, if only first-order terms are considered, the applica-
tion of GUF provides inadequate results. If, however, higher-order terms are considered [6,
clause 5.1.2 note], the GUF becomes valid. Thus, the non-linearity of the model is such
that accounting only for first-order terms is inadequate and higher-order terms cannot be
neglected.
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Figure 7.1: Approximations to the PDF for the output quantity δm obtained using GUF1
(sharply peaked curve), GUF2 (more rounded curve) and MCM scaled histogram, sub-
clause 7.3.5)

7.4 Uncertainty budget

7.4.1 GUF

In many measurement contexts it is common practice to list the uncertainty components
ui(y) = |ci|u(x i), i = 1, . . . , N , where ci is the ith sensitivity coefficient and u(x i) the stan-
dard uncertainty associated with the ith input estimate x i , contributing to the standard
uncertainty u(y). Usually these are presented in a table (such as table 7.3), the “uncer-
tainty budget”. This practice may be useful to identify the dominant terms contributing
to u(y) associated with the estimate of the output quantity.

Table 7.3 lists the partial derivatives of first order for the model (7.3) with respect to
the input quantities together with the sensitivity coefficients, namely, these derivatives
evaluated at the estimates of the input quantities.

Table 7.3: Uncertainty budget – GUF1

Input quantity Std. unc. Partial derivative Rel. contrib./%
X i u(x i) ci = ∂ Y /∂ X i c2

i u2(x i)/u2(y)

mR,c 0.050 mg 1+ (ρa −ρa0
)(1/ρW − 1/ρR) = 1 86

δmR,c 0.020 mg 1+ (ρa −ρa0
)(1/ρW − 1/ρR) = 1 14

ρa 0.058 kgm−3 (mR,c + δmR,c)(1/ρW − 1/ρR) = 0 0
ρW 580 kgm−3 −(mR,c + δmR,c)(ρa −ρa0

)/ρ2
W = 0 0

ρR 0.029 kgm−3 (mR,c + δmR,c)(ρa −ρa0
)/ρ2

R = 0 0

u(y) = 0.0539mg 100

Since the uncertainty associated with the output quantity is the sum of squared individ-
ual uncertainty contributions, ui(y), the squared uncertainties of the two input quanti-
ties mR,c and δmR,c contribute to the squared uncertainty u2(y) in the respective propor-
tions 0.0502/(0.0502 + 0.0202) = 86% and 0.0202/(0.0502 + 0.0202) = 14%.
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The uncertainty budget can also include higher-order uncertainty contributions in accor-
dance with expression (7.7). Table 7.4 shows that the interaction of variables ρa and ρW
has significant impact on the overall uncertainty estimate u(y).

Table 7.4: Uncertainty budget – GUF2 (only terms having non-zero partial derivatives are
shown)

Input quantity Partial derivative Rel. contrib./%
X i ci = ∂ Y /∂ X i c2

i u2(x i)/u2(y)

mR,c 1+ (ρa −ρa0
)(1/ρW − 1/ρR) = 1 44

δmR,c 1+ (ρa −ρa0
)(1/ρW − 1/ρR) = 1 7

Input quantities Partial derivative Rel. contrib./%
X i , X j ci j = ∂ 2Y /(∂ X i∂ X j) c2

i ju
2(x i)u2(x j)/u2(y)

ρa, ρW −(mR,c + δmR,c)/ρ2
W = −0.00156 m4/mg 49

ρa, ρR +(mR,c + δmR,c)/ρ2
R = +0.00156 m4/mg 0

u(y) = 0.0750 mg 100

In cases for which a valid implementation of the propagation of distributions is more ap-
propriate, an uncertainty budget should be regarded as a qualitative tool.

7.4.2 MCM

Neither the propagation of distributions nor its implementation using MCM provides sen-
sitivity coefficients [6, clause 5.1.3]. However, by holding all input quantities but one
fixed at their estimates, MCM can be used to provide the PDF for the output quantity for
the model having just that input quantity as a variable [6]. The quotient of the standard
deviation of the resulting model values and the standard uncertainty associated with the
estimate of the relevant input quantity can be taken as a sensitivity coefficient. This quo-
tient corresponds to that which would be obtained by taking all higher-order terms in the
Taylor series expansion of the model into account. This approach may be viewed as a
generalization of the approximate partial-derivative formula in [6, clause 5.1.3 note 1].

Both the sensitivity coefficients and the contributions for each input quantity to the uncer-
tainty associated with the estimate of the output quantity will in general differ from those
obtained with JCGM 100:2008 [6].
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8 Gauge block calibration

8.1 Preamble

This example shows the uncertainty evaluation for the calibration of a gauge block using
a reference standard by applying the JCGM 100:2008 uncertainty framework (GUF) [6,
clause 5] and the Monte Carlo method (MCM) [12, clause 7]. The example starts with
the transformation of a model for the difference between the length of the blocks, the
quantity actually measured, into an explicit measurement model. Since some of the input
quantities in that model are correlated, a re-parametrization is used to remove that corre-
lation. Probability density functions are assigned to the transformed quantities based on
the metrologist’s knowledge. Using those PDFs, GUF and MCM are applied and the results
discussed.

8.2 Measurement model

8.2.1 The length of a gauge block is determined by comparing it with a known refer-
ence standard having the same nominal length Lnom = 50mm. The direct output of the
comparison of two gauge blocks is the difference d in their lengths given by

d = L(1+αθ )− Ls(1+αsθs), (8.1)

where

L denotes the length (at 20 ◦C temperature [58]) of the gauge block being calibrated,

Ls denotes the length of the reference standard, also at 20 ◦C, as given in its calibra-
tion certificate,

α and αs are the coefficients of thermal expansion for the two blocks,

θ and θs are the deviations in temperature of the two gauge blocks from the 20 ◦C
reference temperature.

(JCGM 100:2008 refers to a gauge block as an end gauge and the symbol L for the length
of a gauge block is used in this document in place of the symbol ℓ used in JCGM 100:2008
for that quantity.)

8.2.2 From expression (8.1), the output quantity L is given by

L =
Ls(1+αsθs) + d

1+αθ
. (8.2)

By using 1/(1+ x)≈ 1− x when |x | is small compared with unity, model (8.2) becomes

L = Ls + d + Ls(αsθs −αθ )− dαθ − Lsαsθsαθ . (8.3)

The term Lsαsθsαθ is a second-order term and can be safely neglected. The term dαθ
is the thermal-expansion correction for the difference d between the two gauge blocks.
Even considering an extreme situation (say, d = 1µm and θ = 3 ◦C), both the value and
the associated standard uncertainty lie well below a negligible 0.1nm. Model (8.3) thus
reduces to

L = Ls + d + Ls(αsθs −αθ ), (8.4)
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an approximation adequate for most practical purposes.

If the difference in temperature between the gauge block being calibrated and the reference
standard is written as δθ = θ−θs and the difference in their thermal expansion coefficients
as δα= α−αs, model (8.4) becomes

L = Ls + d − Ls(δαθ + δθαs). (8.5)

This re-parametrization [10, clause 8.3.2] avoids the introduction of covariances between θ
and θS and between α and αS .

8.2.3 The difference d in the lengths of the gauge block being calibrated and the ref-
erence standard is determined as the average of a series of five indications, obtained in-
dependently, of the difference using a calibrated comparator. The difference d can be
expressed as

d = D+ d1 + d2, (8.6)

where D denotes the observed length difference, and d1 and d2 are additive corrections
modelling, respectively, the random and systematic effects associated with using the com-
parator [10, clause 10.4.3].

8.2.4 The quantity θ , representing deviation of the temperature from 20 ◦C of the gauge
block being calibrated, can be expressed as

θ = θ0 +∆, (8.7)

where θ0 represents the average temperature deviation of the gauge block from 20 ◦C
and ∆ describes a cyclic variation of the temperature deviation from θ0.

8.2.5 Substituting expressions (8.6) and (8.7) into model (8.5) and introducing δL = L − Lnom
gives

δL = Ls + D+ d1 + d2 − Ls[δα(θ0 +∆) + δθαs]− Lnom (8.8)

as the measurement model employed here.

8.2.6 This measurement problem is treated in terms of model (8.8) with output quan-
tity δL and input quantities Ls, D, d1, d2, αs, θ0, ∆, δα and δθ . This treatment differs
from JCGM 100:2008 example H.1 where the models (8.6) and (8.7) are regarded as
sub-models to model (8.5). The approach here avoids having to use the results obtained
from MCM applied to the sub-models (8.6) and (8.7) to provide information about the
distributions for the input quantities d and θ in model (8.5).
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8.3 GUF

8.3.1 The application of the GUF is based on the Taylor series approximation to the
model (8.8), the use of the Welch-Satterthwaite formula to evaluate an effective degrees of
freedom (rounded towards zero) associated with the uncertainty obtained from the law of
propagation of uncertainty, and assigning a scaled and shifted t-distribution with the above
degrees of freedom to the output quantity. For a detailed account of the GUF approach,
including the determination of the sensitivity coefficients, the assignment of estimates and
associated uncertainties, and the consideration of second-order terms, see [6, Annex H.1].

8.4 MCM

The application of MCM requires sampling from a rectangular distribution, normal distri-
bution, t-distribution, U-shaped distribution, and rectangular distribution with inexactly
prescribed limits, and implements adaptive MCM [12, clause 7.9] with a numerical toler-
ance (δ = 0.5) set to deliver ndig = 2 significant decimal digits in the standard uncertainty.

8.4.1 Assignment of PDFs

8.4.1 In the following clauses the available information about each input quantity in
model (8.8) is provided. For each item of information, the JCGM 100:2008 [6] subclause
from which the item is extracted is identified. Also provided is an interpretation of the in-
formation in terms of an assignment of a distribution to the quantity. Table 8.1 summarizes
the assignments made.

8.4.2 The calibration certificate for the reference standard gives bLs = 50.000623 mm as
its length at 20 ◦C [6, Annex H.1.5]. It gives U(bLs) = 75 nm as the expanded uncertainty
of the reference standard length and states that it was obtained using a coverage factor
of k = 3 [6, Annex H.1.3.1]. The certificate states that the effective degrees of freedom
associated with the combined standard uncertainty, from which the quoted expanded un-
certainty was obtained, is νeff(u(ÒLs)) = 18 [6, Annex H.1.6]. Thus, a scaled and shifted t-
distribution tν(µ,σ2) is assigned to bLs [12, clause 6.4.9.7]. Here µ, σ and ν are the
location, scale and degrees of freedom, respectively, with values

µ= 50 000623 nm, σ =
U
k
=

75
3

nm= 25nm, ν= 18.

8.4.3 The average of the five indications of the length difference between the gauge
block being calibrated and the reference standard is 215 nm [6, Annex H.1.5]. The pooled
experimental standard deviation characterizing the comparison of L and Ls was deter-
mined from 25 indications, obtained independently, of the length difference of two stan-
dard gauge blocks, and equal 13 nm [6, Annex H.1.3.2]. Thus, a scaled and shifted t-
distribution tν(µ,σ2) is assigned to D [12, clause 6.4.9.2], with

µ= 215 nm, σ =
13
p

5
nm= 5.8 nm, ν= 24.

8.4.4 According to the calibration certificate of the comparator used to compare L with Ls,
the associated uncertainty due to random effects is 10 nm for a coverage probability of 95 %
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and is obtained from six indications, obtained independently [6][Annex H.1.3.2]. Thus, a
scaled and shifted t-distribution tν(µ,σ2) is assigned to d1 [12, clause 6.4.9.2], with

µ= 0nm, σ =
U
k
=

10
2.57

nm= 3.9 nm, ν= 5.

Here, k is obtained from table G.2 of JCGM 100:2008 with ν = 5 degrees of freedom
and p = 0.975.

8.4.5 The uncertainty of the comparator due to systematic effects is given in the cer-
tificate as 20 nm at the “three sigma level” [6, Annex H.1.3.2]. This uncertainty may
be assumed to be reliable to 25 %, and thus the degrees of freedom is νeff(u(d2)) = 8
[6, Annex H.1.6]. Thus, a scaled and shifted t distribution tν(µ,σ2) is assigned to d2 [12,
clause 6.4.9.2], with

µ= 0 nm, σ =
U
k
=

20
3

nm= 6.7nm, ν= 8.

8.4.6 The coefficient of thermal expansion of the length reference standard is given as
bαs = 11.5× 10−6 ◦C−1 with possible values of this quantity represented by a rectangular
distribution with limits ±2 × 10−6 °C−1 [6, Annex H.1.3.3]. Thus, a rectangular distri-
bution R(a, b) is assigned to αs [12, clause 6.4.2] with limits a = 9.5 × 10−6 ◦C−1 and
b = 13.5× 10−6 ◦C−1.

8.4.7 The temperature of the test bed is reported as (19.9± 0.5) ◦C. The average tem-
perature deviation bθ0 = −0.1 ◦C is reported as having an associated standard uncer-
tainty due to the uncertainty associated with the average temperature of the test bed
of u(bθ0) = 0.2 ◦C [6, Annex H.1.3.4]. Thus, a normal distribution N(µ,σ2) is assigned
to θ0 [12, clause 6.4.7], with µ= −0.1 ◦C and σ = 0.2 ◦C. Since there is no information
about the source of the evaluation of the uncertainty, a normal distribution is assigned.

8.4.8 The temperature of the test bed is reported as (19.9 ± 0.5) ◦C. The stated maxi-
mum offset of −0.5 ◦Cfor∆ is said to represent the amplitude of an approximately cyclical
variation of temperature under a thermostatic system. The cyclic variation of temperature
results in a U-shaped (arc sine) distribution [6, Annex H.1.3.4]. Thus, an arc sine distri-
bution U(a, b) is assigned to ∆ [12, clause 6.4.6], with limits a = −0.5 ◦C and b = 0.5 ◦C.

8.4.9 The estimated bounds on the variability of δα are ±1.0× 10−6 °C−1 with an equal
probability of δα having any value within those bounds [6, Annex H.1.3.5]. These bounds
are deemed to be reliable to 10 %, giving ν(u(cδα)) = 50 [6, Annex H.1.6]. Thus, a rect-
angular distribution with inexactly prescribed limits is assigned to δα [12, clause 6.4.3],
with parameters a = −1.0×10−6 ◦C−1, b = 1.0×10−6 ◦C−1, and d = 0.1× 10−6 ◦C−1. The
stated reliability of 10 % on the estimated bounds provides the basis for this value of the
parameter d.

8.4.10 The reference standard and the gauge block being calibrated are expected to be at
the same temperature, but the temperature difference δθ could lie with equal probability
anywhere in the estimated interval −0.05 ◦C to 0.05 ◦C [6, Annex H.1.3.6]. This difference
is believed to be reliable only to 50 %, giving ν(u(cδθ )) = 2 [6, Annex H.1.6]. Thus, a rect-
angular distribution with inexactly prescribed limits is assigned to δθ [12, clause 6.4.3],
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with parameters a = −0.050 ◦C, b = 0.050 ◦C, and d = 0.025 ◦C. The stated reliability of
50 % provides the basis for this value of the parameter d.

Table 8.1: PDFs assigned to input quantities for the gauge block model (8.8) on the basis
of available information

Parameters
Quantity PDF µ σ ν a b d

Ls/nm tν(µ,σ2) 50 000623 25 18
D/nm tν(µ,σ2) 215 5.8 24
d1/nm tν(µ,σ2) 0 3.9 5
d2/nm tν(µ,σ2) 0 6.7 8

αs/(10−6 ◦C−1) R(a, b) 9.5 13.5
θ0/◦C N(µ,σ2) −0.1 0.2
∆/◦C U(a, b) −0.5 0.5

δα/(10−6 ◦C−1) CTrap(a, b, d) −1.0 1.0 0.1
δθ/◦C CTrap(a, b, d) −0.050 0.050 0.025

8.5 Results

8.5.1 Table 8.2 gives the results obtained using the information summarized in table 8.1.
Figure 8.1 shows the PDFs for δL obtained from the application of the GUF (red solid curve)
and MCM (blue scaled histogram). For the latter, 1.3×106 trials were taken by the adaptive
Monte Carlo procedure.

8.5.2 The estimate cδL is the sum of three terms of model (8.8), Ls, D and Lnom. The
remaining terms have estimates equal to zero, thus not contributing to the measurand
estimate. Yet, the associated uncertainties are different from zero and do contribute to the
associated uncertainty. See also [10, clauses 10.3.4 and 10.4.3].

8.5.3 The distribution obtained from the GUF is a t distribution with ν = 16 degrees
of freedom. The endpoints of the shortest 99 % coverage intervals for δL obtained from
the PDFs are indicated as (broken, red) vertical lines (obtained from the GUF) and (con-
tinuous, blue) vertical lines (obtained from MCM).

Table 8.2: Results for model (8.8) using the information summarized in table 8.1

Method cδL u(cδL) Shortest 99 % coverage
/nm /nm interval for δL/nm

GUF 838 32 [745, 931]
MCM 838 36 [745, 932]

There are some modest differences in the results obtained between the GUF and the MCM.
Taking into account higher-order terms in the GUF yields a smaller standard uncertainty
(2nm as compared to 4nm considering first-order terms only; see [6, Annex H.1.7]).
Whether such differences are important is to be judged in terms of the manner in which
the results are to be used.
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Figure 8.1: PDF for δL obtained using the GUF (red curve) and scaled histogram from
MCM for the approximate model (8.8) using the information summarized in table 8.1
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9 Calibration of a torque measuring system

9.1 Preamble

This example addresses the straight-line calibration of a torque-measuring sensor against
a reference system using measurements taken at different torque values. The goal is to
determine a linear relationship that relates the results of the torque measuring sensor with
those of the reference system. Two approaches are provided: (i) ordinary and weighted
least-squares estimation (see, for example, ISO/TS 28037 [61]), accompanied by an un-
certainty evaluation based on the law of propagation of uncertainty (LPU) [6], and (ii)
a statistical approach applying Bayesian inference (compare, for example, [48]). Explicit
expressions are given for the Bayesian uncertainty analysis, which simplifies its application.

9.2 Experimental

Measurements have been carried out at different values of torque by the sensor and the
reference system. Table 9.1 shows the data, where repeated measurement results of the
sensor have been summarized through their means and standard deviations, respectively.
For further details about the measurements the reader is referred to [112].

Table 9.1: Summary statistics for part of the measurement data given in the guideline
[112][table B6, page 43]. The summary statistics include mean yi and standard deviations
Si of the ni measurement results yi j of the sensor at the ith torque level; x i denotes the
corresponding value given by the reference system. These summary statistics are available
online in repository [73]

i x i/N m Mean yi/N m Si/N m ni

1 0.101 0.0950 0.0055 6
2 0.201 0.1966 0.0052 6
3 0.305 0.3016 0.0041 6
4 0.501 0.4983 0.0041 6
5 1.001 1.0083 0.0098 6
6 3.000 3.0266 0.0082 6
7 4.001 4.0466 0.0121 6
8 5.007 5.0666 0.0379 3

9.3 Specification of the measurand

Let X denote the applied torque, in what follows called stimulus, and Y the correspond-
ing quantity measured by the considered sensor, denoted below as response. The linear
relation

Y = βX (9.1)

is assumed to model the relationship between the measured responses of the sensor and
the applied stimulus. Model (9.1) represents a straight line with zero offset. Such a
straight line has been chosen for physical reasons, which is supported by the observed
data. The measurand is the slope parameter β in the particular straight line model (9.1).
The input quantities are Y1, . . . , Yp (with p = 8 in this example), which correspond to the
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measured values at the considered torques X1, . . . , Xp. The variability associated with the
measured values x1, . . . , xp from the reference device are considered sufficiently small to
be neglected.

9.4 Measurement model

9.4.1 General

9.4.1.1 The uncertainty evaluations presented in this example are based on two different
models. The uncertainty evaluation following the JCGM 100:2008 [6] in connection with
ordinary and weighted least-squares estimation is based on a measurement model in which
the measurand is represented as a function of the input quantities. An estimate of the
measurand is then obtained by evaluating this measurement model using the estimates
of the input quantities. The uncertainty associated with the resulting estimate for the
measurand results from a propagation of the uncertainties associated with the estimates
of the input quantities through this measurement model.

9.4.1.2 The Bayesian inference is based on a statistical model for the observed data, and
the measurand enters as one of the parameters of the statistical model. Bayesian inference
can account for prior knowledge about the measurand, resulting in a probability distri-
bution for the measurand, which can be viewed as the final complete result. Mean and
standard deviation of that distribution can be taken as an estimate and standard uncer-
tainty for the measurand. Bayesian uncertainty analysis can be viewed as being reached
through Bayesian inference, rather than by a process of propagating input uncertainties
through a measurement model in the sense of JCGM 100:2008 [6].

9.4.2 Ordinary and weighted least-squares

9.4.2.1 The application of weighted least squares (WLS) estimation determines an esti-
mate bβ for the measurand by minimizing

Q =
p
∑

i=1

ni
∑

j=1

Wi(yi j − β x i)
2 =

p
∑

i=1

Wi[ni(yi − β x i)
2 + (ni − 1)S2

i ] (9.2)

with respect to β . In expression (9.2), yi and Si represent mean and standard deviation
of the repeated measurement results yi j , j = 1, . . . , ni , of the sensor at the ith stimulus x i ,

and Wi denote some weights, i = 1, . . . , p. The solution bβ to this minimization problem is

bβ =

� p
∑

i=1

niWi x
2
i

�−1 p
∑

i=1

niWi x i yi . (9.3)

The measurement model will be defined as

β =

� p
∑

i=1

niWi x
2
i

�−1 p
∑

i=1

niWi x iYi , (9.4)

that is, by replacing the estimates yi in expression (9.3) with corresponding quantities Yi .
Note that a measurement model in the sense of JCGM 100:2008 [6] is always a model
between quantities. Since the estimates x i of the stimulus are treated as being exact, the
actual quantity X i in (9.4) has already been replaced with the known values x i in this
example. Ordinary least squares (OLS) estimation is obtained by choosing weights Wi = 1
for all observations i = 1, . . . , p.
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9.4.3 Statistical model

A statistical model specifies the distribution from which the observed data is taken as a
realization. The subsequent statistical model assumes that all individual observations yi j ,
for j = 1, . . . , ni , i = 1, . . . , p, are realizations of independently and normally distributed
random variables Yi j with means equal to β x i and variances σ2

i , that is,

yi j|β ,σ2
i ∼ N(β x i ,σ

2
i ). (9.5)

In expression (9.5), the x i denote the known stimuli and σ2
i are the variances to be in-

ferred. The likelihood function is the probability for the observed data viewed as a function
of the measurement model parameters. For the statistical measurement model (9.5), the
likelihood function is

ℓ(β ,σ2|data)∝
p
∏

i=1

(σ2
i )
−ni/2 exp

�

−
1

2σ2
i

[(ni − 1)S2
i + ni(yi − β x i)

2]

�

, (9.6)

where σ2 = (σ2
1, . . . ,σ2

p)
⊤, yi and Si denote the mean and standard deviation of yi j ,

j = 1, . . . , ni , and “data” summarizes the sufficient statistics y1, . . . , yp, S1, . . . , Sp of the
data.

9.5 Uncertainty evaluation

9.5.1 Law of propagation of uncertainty

9.5.1.1 The measurement model (9.4) contains input quantities Yi , i = 1, . . . , p. For
each of these input quantities, a series of repeated measurement results yi j , j = 1, . . . , ni ,
is available. In following JCGM 100:2008, the mean and scaled standard deviation Si/

p
ni

are taken, respectively, as an estimate yi of Yi with associated standard uncertainty u(yi).
The estimates and standard uncertainties for the input quantities are listed in table 9.2.

Table 9.2: The estimates yi and their associated standard uncertainties u(yi) given the
data in table 9.1 and measurement model (9.4)

Input Y1 Y2 Y3 Y4 Y5 Y6 Y7 Y8
quantity

yi/N m 0.0950 0.1966 0.3016 0.4983 1.0083 3.0266 4.0466 5.0666
u(yi)/N m 0.0022 0.0021 0.0017 0.0017 0.0040 0.0033 0.0049 0.0219

9.5.1.2 According to JCGM 100:2008 [6], the estimate bβ of β is taken as the value given
by the measurement model (9.4) when inserting the estimates from table 9.2 for the input
quantities, that is,

bβ =

� p
∑

i=1

niWi x
2
i

�−1 p
∑

i=1

niWi x i yi . (9.7)

The associated variance (squared standard uncertainty) is

u2(bβ) =
p
∑

i=1

�

∂ β

∂ Yi

�

�

�

�

Yi=yi

�2

u2(yi) =

∑p
i=1(niWi x i)2u2(yi)
�∑p

i=1 niWi x
2
i

�2 . (9.8)
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9.5.1.3 The WLS estimate assigns weights as niWi = 1/u2(yi), whereas OLS estimate
corresponds to setting Wi = 1 for all i.

9.5.1.4 Assuming a t-distribution with degrees of freedom ν = n− 1 for β , a 95 % cov-
erage interval is bβ ± t0.975,7u(bβ).

9.5.2 Bayesian uncertainty analysis

9.5.2.1 In a Bayesian inference, prior knowledge about the measurand (and other un-
knowns) is combined with the information contained in the data through application of
Bayes’ theorem. The result is the posterior distribution that summarizes the knowledge
about the measurand (and other unknowns in the statistical model (9.5)), conditional on
the observed data. In our case, the posterior is given through the following probability
density function (PDF):

p(β ,σ2|data)∝ π(β ,σ2)ℓ(β ,σ2|data), (9.9)

where ℓ(β ,σ2|data) is the likelihood function (9.6) for the assumed statistical model (9.5),
and π(β ,σ2) is the adopted prior for the model parameters β and σ2 where σ2 denotes
a vector (σ2

1, . . . ,σ2
p).

9.5.2.2 Once the posterior distribution of all model parameters is obtained, expression (9.9),
the posterior p(β |data) for the parameter of interest (the measurand) is obtained through
marginalization:

p(β |data) =

∫ ∞

0

· · ·
∫ ∞

0

p(β ,σ2|data)dσ2
1 . . . dσ2

p. (9.10)

The marginal posterior (9.10) is a PDF that constitutes the complete Bayesian uncertainty
analysis for the measurand. Summary statistics of this PDF may be sufficient in many cases,
and the posterior mean

bβ =

∫ ∞

−∞
p(β |data)β dβ (9.11)

can be considered as the Bayesian estimate of the slope β , and the posterior standard
deviation as its associated standard uncertainty, u(bβ):

u2(bβ) =

∫ ∞

−∞
p(β |data)(β − bβ)2 dβ . (9.12)

Finally, a 95 % credible interval [βL,βH] can be calculated from the posterior (9.10), which
satisfies

∫ βH

βL

p(β |data)dβ = 0.95. (9.13)

Since Eq. (9.13) does not uniquely determine a credible interval, further conditions need
to be imposed, for example, that the credible interval is probabilistically symmetric, that
is, symmetric around the Bayes estimate, or is the 95 % credible interval of shortest length.
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9.5.2.3 Informative prior Assume that prior knowledge is available about the σ in
a form of prior estimates bσ2

i (i = 1, . . . , p). Assume also that the reliability of these prior
estimates can be expressed in terms of coefficients of variation ci , which are set to ci = 50%
for all values of i. This set of prior knowledge can be modelled using inverse Gamma
distributions. Specifically, the parameters ai and bi of the inverse Gamma distributions
are then given as follows:

ai = 2+ 1/c2
i , bi = (ai − 1)bσ2

i , (9.14)

i.e., the prior knowledge about eachσ2
i is modelled by an inverse Gamma distribution with

mean bσ2
i and variance c2

i (bσ
2
i ).

9.5.2.4 The resulting marginal posterior for the slope is then obtained as

p(β |data)∝ π(β)
p
∏

i=1

tni−1+2ai

�

β; yi/x i ,
(ni − 1)S2

i + 2bi

ni x
2
i (ni − 1+ 2ai)

�

, (9.15)

where π(β) denotes the prior PDF for β , and tν(x; m, s2) stands for the PDF of a scaled
and shifted t-distribution with ν degrees of freedom, that is,

tν(x; m, s2)∝
�

1+
1
ν

(x −m)2

s2

�−(ν+1)/2

. (9.16)

9.5.2.5 The univariate PDF (9.15) can be evaluated and the summary statistics (9.11)
to (9.13) obtained through standard procedures of numerical quadrature. For evaluat-
ing (9.15), it is advantageous to calculate the logarithm of p(β |data) first, applying the
exponential function afterwards.

9.5.2.6 Markov Chain Monte Carlo method (MCMC) sampling can also be employed to
draw samples from the posterior distribution arising from the above considerations. It
is additionally assumed that prior knowledge is available about β in the form of a nor-
mal distribution with mean 1 and standard deviation 0.1. In Stan [104], the following
measurement model can be written:

data {
int<lower=1> N;
vector[N] x;
vector[N] y;
vector[N] uy;
vector[N] a_prior;
vector[N] b_prior;

}
parameters {

real beta;
real<lower=0> sigma2[N];

}
model {

// priors for sigma^2
sigma2 ~ inv_gamma(a_prior, b_prior);
// prior for beta
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beta ~ normal(1.0, 0.1);
// likelihood
for(i in 1:N) y[i] ~ normal(beta * x[i], sqrt(sigma2[i]));

}

9.5.2.7 Weakly informative prior The case of vague prior knowledge can be modelled
by choosing a vague prior for the measurand β , such as a normal distribution with mean 1
and standard deviation 100. Likewise, values of ci =1000 % can be assigned and Markov
chain Monte Carlo sampling performed as before.

9.6 Reporting the result

Table 9.3 contains the estimate, its associated standard uncertainty, and the 95 % coverage
interval obtained by application of the JCGM 100:2008 uncertainty framework (GUF) to
OLS and WLS estimation, together with corresponding results for the Bayesian uncertainty
analysis. The credible intervals determined by the Bayesian uncertainty analysis were
taken as probabilistically symmetric intervals. Figure 9.1 shows the PDF for the measurand
obtained by Bayesian uncertainty analyses in comparison with the results achieved by WLS
estimation with uncertainty evaluated according to JCGM 100:2008 [6].

Table 9.3: Results obtained by ordinary least-squares (OLS) and weighted least-squares
(WLS) with uncertainty evaluation according to JCGM 100:2008, as well as results from a
Bayesian uncertainty evaluation

Method β u(β)
95 % coverage
(credible interval)

OLS 1.0107 0.0015 [1.0071, 1.0143]
WLS 1.0085 0.0008 [1.0067, 1.0103]
Informative Bayes 1.0093 0.0009 [1.0075, 1.0110]
Non-informative Bayes 1.0094 0.0009 [1.0076, 1.0111]

9.7 Discussion

9.7.1 The results obtained by application of the GUF to OLS and WLS estimation are
different, which is due to the difference of the corresponding models (9.4) used. Specif-
ically, the WLS estimation with weights niWi = 1/u2(yi) leads to a different estimate for
the slope and a smaller uncertainty than OLS estimate. These weights are ‘optimal’ in the
sense that they lead to a minimum uncertainty under all measurement models (9.4).

9.7.2 On the other hand, OLS does not apply ‘optimal’ weights and results in a larger
uncertainty associated with its different estimate of the measurand. Since the correspond-
ing measurement model is linear in the data, the squared standard uncertainty provides
an unbiased estimate of the variance of the OLS estimator under hypothetical repeated
sampling from the statistical model (9.5). However, OLS estimate utilizes a measurement
model that does not account for the fact that different observations have different variabil-
ity. That is, measurements are assigned the same weight although their variability differs
by almost an order of magnitude.
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Figure 9.1: Marginal posterior distribution p(β |data) for the regression slope from infor-
mative Bayes procedure and the estimate from classical OLS procedure

9.7.3 The WLS estimate can be also be viewed as a solution to the statistical model (9.5)
if the variances σ2

i were known. For unknown variances, however, the optimal weights
niWi = 1/(σ2

i /ni) are also unknown. While the standard uncertainties u(yi) provide ap-
proximate estimates of these optimal weights in the form of σi/

p
ni , they can become

unreliable when derived from a small number of repeated measurements.

9.7.4 The Bayesian uncertainty analysis is based on the statistical model (9.5) and does
account for the different variability in the observations. At the same time, it does not use a
single estimate of that variability to be used in a subsequent estimation of the measurand,
but rather estimates the measurand and the variability in the observations simultaneously.
Due to the straight-line model, all observations influence the estimation of all different
variabilities in the observations, and observations with large variability will have less in-
fluence in the final result for the measurand. Furthermore, Bayesian inference allows prior
knowledge about the measurand to be taken into account. For these reasons, the Bayesian
uncertainty analysis is recommended for this example. It should be noted that methods
from classical statistics can also be used to analyze the data on the basis of the statistical
model (9.5), which has not been considered in this example.

9.7.5 Bayesian inference using the informative prior described in clause 9.5.2.3 yields
very similar results to those using the non-informative prior (9.5.2.7. The reason is that
the data dominate the prior information taken for the measurand, and that the (hypothet-
ical) prior knowledge about the variances has been taken only vaguely and in accordance
with the observed variances. If either of these two latter conditions for the prior for the
variances is removed, the results of an informative Bayesian inference might look appre-
ciably different because each variance is modelled individually for each stimulus value and
only a small number of repeated measurement results are available. In this case, the prior
for the variance will be more informative. In other applications it can be reasonable to
assume a common variance, which would reduce the sensitivity with respect to the prior
for the variance significantly. Furthermore, the procedure provided for the Bayesian infer-
ence would then result in a single t distribution for the measurand in the non-informative
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case, or the product of a single t distribution and an informative prior for the measurand
otherwise.

9.7.6 The statistical model (9.5) used here does not directly account for possible errors
in the measured values provided by the reference system. In fact, the example B2 of the
guideline VDI/VDE 2600 part 2 [112] reports non-vanishing uncertainties for them. The
statistical model (9.5) accounts for such an additional variability to a certain extent, as
it includes unknown, individual variances for the dependent variable, that are simultane-
ously inferred together with the parameters of the straight line.
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10 Conformity assessment of total suspended particulate mat-
ter in air

10.1 Preamble

The main goal of this example is to calculate, according to JCGM 106:2012 [8], risks of
false decisions in conformity assessment when a normal distribution is not adequate to
model prior information about the measurand. As a case study, mass concentration of
total suspended particulate matter (TSPM) in ambient air is considered.

10.2 Objective and data

10.2.1 A total of 220 measurement results of the mass concentration of TSPM in ambient
air, collected in 2009 in the proximity of a stone quarry located in Israel, was obtained ac-
cording to Environmental Protection Agency (EPA) method IO-2.1 [41]. Such results were
compared with the national (Israeli) regulation limit for air quality to study the occurrence
of out-of-specification (OOS) results, as detailed in [69, 70].

10.2.2 In this example, the focus is on the calculation of global and specific risks of false
decision in the conformity assessment of the air quality, based on such kind of measure-
ment results. The risk of underestimating the pollutant concentration is the consumer’s
(inhabitants’) risk and that of overestimating it is the producer’s (owner’s) risk. Calcula-
tion of such risks is as important for the regulator protecting the inhabitants’ quality of
life in the area surrounding the quarry as for the manufacturers’ association acting in the
interests of the stone producers in the country.

10.3 Specification of the measurand

For the characterization of TSPM, the EPA method IO-2.1 [41] indicates the use of a high-
volume sampler for collection of particles with aerodynamic diameters of 100 µm or less.
For each measurement, a large volume V of air between 1600 m3 and 2400 m3 was sampled
at a constant flow rate and the mass m of the matter in the sampled air volume, collected
on the sampler filter, was measured as the difference between the results of weighing
the filter before and after sampling. The measurand is the average value of the mass
concentration TSPM over the sampling period: ρ = m/V (mgm−3).

10.4 Measured values and associated measurement uncertainty

10.4.1 The measured values of the TSPM mass concentration, bρi , (i = 1, . . . , 220), are
reported in mg m−3 within the Q1data.txt file (available at [87]) and depicted in fig-
ure 10.1. (The running index i will be dropped hereafter for simplicity.) Note further that
in JCGM 106:2012 a measured value would be denoted as ρm, whereas in this document
it is denoted by bρ.

10.4.2 A full uncertainty budget for the considered results is available in [70], where it
is shown that the major contribution to the uncertainty is that from the measurement of
the sampled air volume. The relative standard uncertainty associated with any bρ is 7.0 %.
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Figure 10.1: Histogram of the measured values of TSPM mass concentration and the cor-
responding lognormal probability density function (expression 10.1). The quantiles of this
distribution are q0.025 = 0.042 mg m−3 and q0.975 = 0.229 mgm−3

10.5 Tolerance limits

The Israeli national regulations of ambient air quality prescribe an upper tolerance (regu-
lation) limit TU = 0.2mg m−3 for TSPM mass concentration averaged over 24 h. This limit
applies for any location, including those close to the quarry.

10.6 Decision rule and conformity assessment

10.6.1 General

10.6.1.1 Regulations require direct comparison of measured values bρ with TU, as shown
in figure 10.1. In the present example, acceptance limits AU will be made varying in order
to show their impact on the risk values of false decisions. When acceptance limits are taken
to coincide with the tolerance limits (that is, AU = TU), a ‘shared risk’ rule is considered as
the decision rule for conformity assessment [8, clause 8.2.1].

10.6.1.2 In this instance, the inhabitants living in the area are considered the ‘con-
sumers’, whereas the stone quarry owners are the ‘producers’. So, the ‘consumer’s risk’
relates to the inhabitants, whereas the ‘producer’s risk’ relates to the quarry owners.

10.6.1.3 The global and specific risks of false decisions in conformity assessment are
defined in [8, clause 3.3] for both the consumer and the producer, and have different
interpretations. While a specific risk is the risk of an incorrect decision based on a mea-
surement result of a particular air sample, global risk refers to the probability of incorrect
decisions based on future measurement results. Both kinds of risks rely on a Bayesian
framework but require the calculation of different probability objects. Indeed, the poste-
rior distribution (obtained through Bayes’ theorem [48]) is used for specific risks while the
joint distribution is used for global risks. The posterior distribution is for the true value ρ
given the measured value bρ. The joint distribution is for the true value and the measured
value. See clauses 10.6.3 and 10.6.4.
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10.6.2 Bayesian framework

10.6.2.1 The evaluation of specific and global risks of false decisions on a characteristic
of an item is described in JCGM 106:2012 [8].

The underlying approach requires defining a prior probability density function (PDF) g0(ρ)
for TSPM mass concentration. Here, the prior PDF is based on experimental data (see
JCGM 106:2012 [8, clause 6.2.2]) and describes the distribution of the population of
the TSPM mass concentration. An adequate fit for the experimental results, among possible
candidate distributions, is the lognormal distribution:

g0(ρ) =
1

ρσ
p

2π
exp

�

−
(lnρ −µ)2

2σ2

�

. (10.1)

The lognormal prior PDF (10.1) is depicted as the curve approximating the histogram in
figure 10.1. The location and scale parameter estimates of this distribution are bµ= −2.325
and bσ = 0.434, respectively. They are the sample mean and standard deviation, respec-
tively, of the log-transformed data.

10.6.2.2 The aforementioned estimates of µ andσ ignore the fact that the TSPM data are
observed with measurement uncertainty, which is now taken into account using Bayesian
methods. A hierarchical Bayesian model can be specified as follows. The likelihood is
given by

ρ ∼ LN(µ,σ),

bρi ∼ N(ρ, 0.07bρi),

and the priors are

µ∼ N(µ0,σ0),

σ ∼ Cauchy(0, A),

ρi ∼ N(bρi , 0.07bρi).

The prior distribution of µ can be tuned, for example, such that its median corresponds to
TU/2 (µ0 = −2.30) and its standard deviation is arbitrarily wide (σ0 = 2.0). Similarly, in
the absence of any strong prior information, A is set sufficiently large (A= 2.0) to yield a
prior distribution for ρ whose 95 % quantiles span the observed data. The Cauchy distri-
bution is chosen as it is a weakly informative prior and concentrates the density between
0 and A [47]. The scale parameter A is set based on historical data.

In Stan, the posterior distributions of parameters µ and σ can be obtained using the
following model:

data {
int<lower=1> N;
vector[N] rho_hat;

}
parameters {

real mu;
real<lower=0> sigma;
vector[N] rho;
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}
model {

// vague priors
mu ~ normal(-2.3, 2.0);
sigma ~ cauchy(0, 2.0);
rho ~ normal(rho_hat, 0.07 * rho_hat);
// likelihood
rho ~ lognormal(mu, sigma);
rho_hat ~ normal(rho, 0.07 * rho_hat);

}

10.6.2.3 With Markov Chain Monte Carlo method (MCMC) sampling, facilitated by the
R function stan() available from the package rstan [104], parameter estimates are ob-
tained which, in this case, match closely with the simple method-of-moments estimates.
Posterior estimates of µ and σ are bµ = −2.329 and bσ = 0.434, which are nearly identical
to the estimates provided by the method of moments.

10.6.2.4 Each measurement result bρ was modelled by a normal distribution with expec-
tation equal to bρ and standard deviation equal to the standard measurement uncertainty
u= 0.07bρ [70]. The corresponding likelihood is hence

h(bρ|ρ) =
1

u
p

2π
exp

�

−
(bρ −ρ)2

2u2

�

. (10.2)

10.6.2.5 When both the prior PDF and the likelihood are normal distributions, the pos-
terior PDF [8, expression (1)] is normal [8, clause 7.2.1]. In this example, the prior PDF
is log-normal. However, the method described in JCGM 106:2012 [8] to evaluate risks
applies for any PDF.

10.6.3 Global risks

10.6.3.1 For any considered upper acceptance limit AU, global risks for the consumer
and the producer were calculated by combining the lognomal prior PDF (10.1) and the
normal likelihood (10.2), according to [8, expressions (19) and (20)]. The joint PDF can
be obtained in a numerically stable way by taking the logarithms of both the prior and the
likelihood, summing the two transformed distributions and taking the exponential of the
result, as follows:

P = function(xy){
p1 = dlnorm(xy[1], meanlog = -2.325, sdlog = 0.434, log = TRUE)
p2 = dnorm(xy[2], mean = xy[1], sd = 0.07 * xy[1], log = TRUE)
exp(p1 + p2)

}

10.6.3.2 The integration of this joint PDF can be carried out using the R function
cubintegrate defined in the package cubature [81]. In the considered case, since
all the involved PDFs were defined on the positive axis only, the lower integration limits
were both taken as zero:
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T_U = 0.2
A_U = 0.2

require(cubature)
Int = cubintegrate # rename the function cubintegrate
C = 1/Int(P, lower = c(0,0), upper = c(Inf, Inf))$int
risk_c = C * Int(P, lower = c(T_U, 0), upper = c(Inf, A_U))$int
risk_p = C * Int(P, lower = c(0, A_U), upper = c(T_U, Inf))$int

10.6.3.3 The obtained consumer’s (red upward sloping line) and producer’s (blue down-
ward sloping line) global risks are displayed in figure 10.2, for AU values varying in the
interval [TU − 0.05mg m−3, TU + 0.05mg m−3].
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Figure 10.2: Global consumer’s risk (red upward sloping line) and global producer’s risk
(blue downward sloping line) as functions of the acceptance limit

Considering, for example, the special case in which AU = TU, consumer’s and producer’s
global risks were 0.6 % and 0.7 %, respectively. These risk estimates can also be obtained
without the need for numerical integration of the posterior PDF. Instead, a Monte Carlo
method as shown in the R code below can be used:

N = 1e6
y_true = rlnorm(N, meanlog = -2.325, sdlog = 0.434)
y_meas = rnorm(N, mean = y_true, sd = 0.07 * y_true)
T_U = 0.20
A_U = 0.20
risk_c = sum(y_true > T_U & y_meas < A_U)/N
risk_p = sum(y_true < T_U & y_meas > A_U)/N

10.6.3.4 Consider determining the maximum acceptable value of AU corresponding to a
small consumer’s risk, such as 0.01%. The result is that such an acceptance limit should not
exceed 0.17 mg m−3. However, in this instance, the global producer’s risk would increase
from 0.7% to 5 %. The other way round, AU should be at least equal to 0.23 mg m−3 in
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order to assure a producer’s risk smaller than 0.01%. In this case, the global consumer’s
risk would increase from 0.6% to 2 %.

10.6.4 Specific risks

10.6.4.1 Whereas global risks are concerned with future outcomes from this quarry, spe-
cific risks are concerned with a particular measured value at hand, as discussed in [8,
clause 9.3.2].

10.6.4.2 For a specific value bρ < AU (that is, the measured TSPM mass concentration
is assessed as conforming to the regulatory limit), the consumer’s specific risk is the inte-
gral of the posterior PDF g(ρ|bρ) over the region [TU,∞] — the interval of true values
that would be deemed as nonconforming. For a specific value bρ > AU (that is, a value
not conforming to the regulatory limit), the producer’s specific risk is the integral of the
posterior PDF over the interval [0, TU]— the region of actually conforming true values.

10.6.4.3 In both cases, the posterior PDF g(ρ|bρ) [8, expression (A.11)] is needed, which
is not available in closed form. The integral of the posterior PDF is calculated by means of
the R function integrate:

P = function(rho, rho_hat){
p1 = dlnorm(rho, meanlog = -2.325, sdlog = 0.434, log=TRUE)
p2 = dnorm(rho_hat, mean = rho, sd = 0.07 * rho_hat, log=TRUE)
exp(p1 + p2)

}

T_U = 0.2
# specific consumer’s risk for rho_hat = 0.190
rc1 = integrate(P, T_U, Inf, rho_hat=0.190)$value
rc2 = integrate(P, 0, Inf, rho_hat=0.190)$value
risk_c = rc1/rc2

# specific producer’s risk for rho_hat = 0.225
rp1 = integrate(P, 0, T_U, rho_hat=0.225)$value
rp2 = integrate(P, 0, Inf, rho_hat=0.225)$value
risk_p = rp1/rp2

The obtained consumer’s and producer’s specific risks for various values of bρ are displayed
in figure 10.3 (for AU = TU).

Owing to the comparatively large width of the prior distribution, and thus to the meagre
prior information, the posterior is essentially determined by the likelihood. The implication
is that the specific risks as calculated in a purely frequentist context would be very close
to those given here.

10.7 Interpretation of results

10.7.1 Studies on global risks, such as that conducted in clause 10.6.3, allow the involved
parties (consumers and producers) to agree on an acceptance limit, thus balancing the
safeguarding of the inhabitants’ health and the economical interests of the quarry owners,
in the considered example.
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Figure 10.3: Consumer’s and producer’s specific risks depending on the measurement re-
sults for the TSPM concentration in the quarry

10.7.2 The approach in clause 10.6.4 provides risks of false decision for a specific result
and for a particular acceptance limit (AU = TU, in the considered case). From a practical
point of view, no action will be undertaken when a measurement result falls below the ac-
ceptance limit, that is, when it is conforming with requirements. However, when a result
exceeds the limit, it will be declared as non-conforming and some corrective action will
be required. In this case, producers have at hand a tool for assessing the extent of their
responsibility for such failure and possibly elaborate an appropriate reaction. As an exam-
ple, for a non-conforming measured value bρ = 0.225 mgm−3, the specific producer’s risk
is about 11%, meaning that there is a non-negligible 11% probability that such a value
corresponds to an actually conforming true value of the TSPM levels.
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11 Effect of considering a 2D image as a set of pixels on a com-
puted quantity

11.1 Preamble

11.1.1 This example is concerned with properties of a physical object extracted from a
raster image. With a greater number of pixels to reproduce the image, a better description
of the underlying physical object is generally obtained in terms of the estimate of the
measurand and its associated uncertainty. However, the consequent increase in image
resolution has a cost under different perspectives: time, money and susceptibility of image
result to other instrumental effects. In some cases, an increase in resolution does not lead
to appreciable improvement of the global result because of other uncertainty sources. A
trade-off is often sought.

11.1.2 In radiation therapy anatomical segmentation, image pixel size impacts on the
area of a 2D section of a tumour (or an organ) given by the delineation of a 2D image.
Such a delineation is made by an operator or an algorithm and constitutes one step in
the estimation of the volume of a 3D region (the ultimate measurand) corresponding to a
reconstructed 3D image of a region of interest (ROI) such as from a set of parallel planar
sections.

11.2 Estimation of organ or tumour mass

11.2.1 The estimation of tumour mass necessitates some form of outlining of the tumour
on an image. Under assumptions of homogeneity, tumour mass is directly proportional to
its volume and so it can be obtained using suitable imaging. Various outlining or segment-
ing techniques are used for this purpose [51].

11.2.2 The area of a tumour section is generally obtained from an ROI (region of interest)
outlined on anatomical imaging data in the form of an array of pixels [46]. Knowing that
outline, the corresponding area of the ROI can be estimated. Approaches are considered for
evaluating a measure of the outlining uncertainty, and the use of that measure to evaluate
the uncertainty associated with estimated area. The method used will depend largely on
the information and resources available at the time of outlining and the method employed
by the operator or algorithm to define the ROI. When determining areas manually, an
outline is typically drawn by an operator across all images that comprise the data set of
concern.

11.2.3 In practice, a set of planar sections of the ROI, usually at a constant spacing, is
considered, from each of which the area is deduced and hence, by considering all such
sections, the volume is estimated. Here, attention is paid to a single section as one step in
the overall process.

11.2.4 In general, segmentation methods can be divided into the following categories:
manual methods, threshold-based methods, boundary-based methods and stochastic- and
machine learning-based methods. More details of these categories are given in [54] and the
references therein. Here, just boundary-based methods are considered, such as gradient-
based edge detection, which require an initial region of interest (ROI) to be defined inside
which an operator or algorithm estimates the object boundary [46].
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11.3 Measurement model

11.3.1 The measurand is the area of a plane section of the tumour.

11.3.2 Figure 11.1 shows an outline of a tumour obtained from a pixelated image, at
two image resolutions, produced by scanning equipment, which will be used to provide
numerical results and examine the effect of pixel size on the reconstructed shape. It is
assumed that the outline of the tumour is contained within the darker-shaded pixels chosen
by an operator or algorithmically. Each pixel is taken as of unit size (dimension 1× 1).

Figure 11.1: Tumour profiles for fine and coarse pixel sizes: 85 and (right) 585 pixels
defining the outline and interior

11.3.3 The measurement model is specified by the algorithm used to compute the area
of the tumour section. The area depends on knowledge of the boundary of the section,
specifically a mathematical description of a smooth curve representing the boundary, for
which a parametric representation is used:

x = F(t), y = G(t), (11.1)

where the parameter t is (ideally) taken as arc length from some starting point.

11.3.4 The tumour section area could also be computed, more approximately, as some
average (such as the arithmetic mean) of two extreme areas. Referring to either panel of
figure 11.1, one area would be that of the union of the grey pixels and the white pixels
they surround. The other area would be that of the union of those white pixels. Such a
method may not be effective for a small number of pixels. In clause 11.4, an argument
is made in favour of representing the boundary by a smooth curve (11.1). Clause 11.5.1
makes a simple comparison of those approaches in terms of the outlines in figure 11.1.

11.3.5 Various empirical functions such as periodic splines and parametric Fourier series
can be used for F and G to form the profile. Parametric Fourier series are selected based on
considerable experience [26, 28, 35, 68] with the use of Fourier series for data analysis.
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For this purpose, some guidance in [63] concerned with the determination and use of
polynomial calibration functions is adapted. That standard gives advice on determining
the degree of polynomial most appropriate for the data by first constructing polynomials of
all degrees n from one up to some value nmax and then selecting a particular degree from
that set. Here, parametric Fourier series involving an increasing number of harmonics are
determined, choosing the number regarded as suitable according to criteria to be discussed.
By analogy with polynomials, the number of harmonics is called the degree [85].

11.3.6 A parametric Fourier series (11.1) of degree n has 2n+1 parameters defining F(t)
and an identical number defining G(t). The x- and y-components can be expressed as

Fn(t) = b1 +
n
∑

r=1

[b2r cos(2πr t) + b2r+1 sin(2πr t)], (11.2)

Gn(t) = c1 +
n
∑

r=1

[c2r cos(2πr t) + c2r+1 sin(2πr t)]. (11.3)

11.3.7 Here, the outline is approximated by such a parametric Fourier series. The area A
enclosed by the curve can be expressed in terms of the coefficients in the parametric Fourier
series (11.2) and (11.3) by

A= π
n
∑

r=1

r(b2r+1c2r − b2r c2r+1) , (11.4)

an expression derived in [111, annex E5.1.A].

11.3.8 The data comprises a set of m = 38 ordered values x i and yi , i = 1, . . . , m, taken
as the midpoints of the grey pixels in figure 11.1 (right panel) through which the tumour
boundary passes. Since the true values of of each coordinate pair lie somewhere in the
containing pixel, it is assumed that these coordinates can be modelled by rectangular dis-
tributions R(−1/2, 1/2) relative to that midpoint. Accordingly, the standard uncertainties
u(x i) and u(yi), denoted by u0, associated with the x i and yi are taken as the standard
deviations of these distributions, namely, 1/(2

p
3)≈ 0.29.

The points (x i , yi) are regarded as values of the dependent variables x and y correspond-
ing to an increasing set of values t i , i = 1, . . . , m of the independent variable t. The values
of t i used are the cumulative chordal distance from (x1, y1) to (x i , yi):

t1 = 0, t i = t i−1 +
�

(x i − x i−1)
2 + (yi − yi−1)

2
�1/2

, i = 2, . . . , m.

These t i-values are normalized so that the total cumulative chord length becomes unity:

t i :=
t i

tm
, i = 1, . . . , m.

Since, for sufficiently closely-spaced data, cumulative chord length approximates well arc
length and is often used for that purpose, normalized cumulative chord length is employed
as realizations of the parameter t [45].

Parametric Fourier series of degrees n = 1, . . . , nmax, are fitted to the data and a degree
that represents a compromise between fidelity and smoothness is established. The x-
data and y-data can be treated separately since they are modelled by the functions (11.2)
and (11.3), which have no parameter in common.
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A goodness-of-fit measure is formed for each degree. A common measure, used here, is
the chi-squared statistic χ2

obs, the sum of squares of the deviations of the fitted series of
degree n from the data (x i , yi), weighted inversely by the squared standard uncertainties
associated with those values ([62] provides an analogous description for polynomial re-
gression). When covariances associated with these data are present, a modified measure
is used, but that is not the case here.

In terms of the computed Fourier series for degree n, the observed chi-squared value is

χ2
obs(n) =

m
∑

i=1

[x i − Fn(t i)]
2 + [yi − Gn(t i)]

2

u2
0

=
1

12

m
∑

i=1

�

[x i − Fn(t i)]
2 + [yi − Gn(t i)]

2	

with degrees of freedom ν= 2m−4n−2 (the number of data less the number of adjustable
parameters), from which is obtained the root-mean-square residual RMSR(n) for each n:

RMSR(n) =

�

χ2
obs(n)

2m− 4n− 2

�1/2

. (11.5)

11.3.9 In addition to using these RMSR-values to choose a value of n, various model-
selection criteria such as Akaike’s Information Criterion (AIC), corrected Akaike’s Informa-
tion Criterion (AICc) and the Bayesian Information Criterion (BIC) [16] are used. Generi-
cally, for m data points and a model with n+ 1 parameters, these criteria are

AIC(n) = χ2
obs(n) + 2(n+ 1) ,

AICc(n) = AIC(n) + 2(n+ 1)(n+ 2)/(m− n− 2) ,

BIC(n) = χ2
obs(n) + (n+ 1) ln(m).

In this application, there are 2m data, the x- and the y-values, and 4n+ 2 parameters in
the functions (11.2) and (11.3). So, the generic m and n in the above information criteria
and expression (11.5) for RMSR and S are replaced by 2m and 4n+ 2, respectively.

11.3.10 All three information criteria are designed to balance reproducing the data and
parsimony of model [80]. Given a number of candidate models, here parametric Fourier
series of degrees n= 1, . . . , nmax, the model having the smallest value of AIC (or AICc
or BIC) would usually be selected. According to [63], experience with polynomial calibra-
tion problems indicates that the same degree of polynomial is often selected by all three
criteria, although there may be some exceptions such as when the data set is small.

11.4 Model selection

11.4.1 Consider the profile of the tumour section shown in the left panel (85 pixels) of fig-
ure 11.1. The midpoints of the boundary pixels, each of unit size, are given by the m= 38
coordinate pairs with the bottom-left corner of the grid corresponding to a location (1, 1)
and, consequently, the top-left corner pixel of the tumour outline corresponding to loca-
tion (3, 12).

11.4.2 Consider approximations to this set of discrete data points by continuous profiles
in the form of curves represented by the parametric Fourier functions (11.2) and (11.3)
with the values of t taken as cumulative chord length as in clause 11.3.
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11.4.3 Parametric Fourier series (11.4) with n= 1, 2, . . . , 15 harmonics were fitted to the
data by least squares Ordinary least squares was used because of the common uncertainty.
The corresponding values of RMSR, AIC, AICc and BIC, and the value bA of area A, were
calculated and given in table 11.1. Figure 11.2 displays the parametric Fourier series for
these degrees.

Table 11.1: Root-mean-square residuals and information criteria for various numbers, n,
of harmonics and tumour section area estimates bA in the example of the coarse-pixelated
tumour image in figure 11.1 (left)

n RMSR AIC AICc BIC bA

1 0.96 38 39 46 65.1
2 0.63 23 25 34 63.9
3 0.60 25 30 40 64.2
4 0.43 23 31 41 65.7
5 0.43 27 39 48 65.7

6 0.39 30 48 55 65.2
7 0.40 33 59 62 65.2
8 0.39 37 73 68 65.4
9 0.40 41 90 76 65.4

10 0.41 45 112 83 65.4
11 0.43 49 141 90 65.3
12 0.44 52 180 97 65.3
13 0.44 56 236 104 65.3
14 0.40 59 325 110 65.2
15 0.37 63 485 117 65.4

11.4.4 The intention is to select an appropriate number of harmonics that offers a bal-
ance between accounting for the data uncertainties and yielding an acceptably smooth
representation of the profile. For the coarsely pixelated image, the sequence of RMSR val-
ues (column 2 of table 11.1) initially shows a tendency to decrease to a minimum value
of approximately 0.4 when n= 6 (six harmonics). Then, the sequence saturates at about
that level for a few degrees, subsequently tending to behave erratically for larger n due in
part to the errors in the data being followed too closely. The Fourier series of degree 6 was
selected, for which the RMSR value is 0.39. This value is framed in figure 11.2 as is the
corresponding area estimate of 65.2. Curiously, the three information criteria (AIC, AICc
and BIC) all exhibit minimum values for n= 2, shown underlined in table 11.1, for which
the RMSR value of 0.63 is some 50 % higher than that, 0.39, for n= 6.

11.4.5 This observation about the information criteria is not consistent with general ex-
perience of selecting an appropriate degree in polynomial calibration studies. Further, this
choice of degree (n = 2) does not seem particularly consistent with the data on which it
was based as seen from the poor fit when this number of harmonics are used to fit the
tumour outline (figure 11.2). For instance, the re-entrant feature in the ‘north-east’ region
of the outline is not reproduced. This and other features, however, are better reproduced
by Fourier series of degree n ≥ 5. By the time n = 15 is reached, spurious effects (not
shown), due to following the ‘noise’ in the data, appear in the curves that are not apparent
in the perceived outline of the tumour.
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Figure 11.2: Fourier representations of a section of a tumour using 1 to 9 Fourier harmonics

11.4.6 It would be unwise to select a low degree such as n ≤ 3 since the corresponding
Fourier series over-smooth the tumour outline. At the other extreme, the choice of a large
number of harmonics such as 13 or greater means that the Fourier representations follow
too closely the sequence of pixel midpoints specified by the data. An argument could be
made purely on visual grounds that any number of harmonics between 5 and 9 might be
suitable. Degree six was selected for the reasons above.

11.4.7 Recently [80], modified AIC and BIC criteria for model selection have come avail-
able based on incorporating the Shannon entropy in the criteria. Although their use for
synthetic data sets containing 50 to 550 points has been demonstrated to provide better
discrimination in the choice of model, to the knowledge of the JCGM they have not yet
been applied in metrology.

11.5 Uncertainty evaluation

11.5.1 The corresponding area contained within the curve modelled by a parametric
Fourier series is 65.2 (clause 11.4.4). This value should be compared with the mini-
mum and maximum values given by the inner and outer profile of the boundary pixels,
namely, 47 and 85, whose mean is 66 — close in terms of this simplistic approach to the
value from the Fourier representation.

11.5.2 The RMSR value of 0.39 (clause 11.4.4) does not relate to the uncertainty associ-
ated with the estimate of the area of the section of the tumour. Because of the complexity
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of propagating uncertainties associated with pixel midpoint locations through the mea-
surement model (11.4), a Monte Carlo method (MCM) was applied. The t-values have
uncertainties associated with the uncertain x- and y-values, on which they based. Their
effect is taken into account by applying MCM, which is relatively straightforward.

11.5.3 As in clause 11.3.8, the x- and y-coordinates of the midpoints of each boundary
pixel (square and of unit area) are modelled by rectangular distributions R(−1/2,1/2)
relative to that midpoint . By sampling from these distributions, a new set of equally
plausible x , y coordinates is created, a Fourier series with n= 6 harmonics computed, and
the corresponding area within the outline calculated. Repetition a large number of times
(105) yields a distribution of values for the area whose average is the Monte Carlo estimate
for the area and whose standard deviation is the associated standard uncertainty.

11.5.4 This calculation gave the estimated PDF for tumour section area shown in figure
11.3. From the Monte Carlo results, the area estimate was 65.0 and the associated standard
uncertainty was 1.6. This estimate is practically indistinguishable from the aforementioned
point-estimate of 65.2 square pixels (table 11.1), indicating little bias in the process.

Cross−sectional area of tumour
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Figure 11.3: Scaled histogram approximation to the PDF for the cross-sectional area of the
tumour given by Monte Carlo sampling using parametric Fourier series with six harmonics

11.6 Reporting the result

11.6.1 For the example presented in clause 11.4, two estimates of the area a of the
considered section of the tumour and the associated standard uncertainties were provided.
One result (clause 11.5.1) was

ba = 67, u(ba) = 11

using the simple approach of taking the mean of the areas defined by the inner and outer
perimeters of the shaded pixels in figure 11.1 (centre) and taking these two extremes as
endpoints of a rectangular distribution of possible values. The second result was

ba = 65.0, u(ba) = 1.6,

© JCGM 2024 – All rights reserved Committee draft



JC
G

M
W

G
1

Co
m

m
itt

ee
dr

af
t

80 JCGM GUM-5:2024-12-06

which was obtained by modelling the midpoints of the boundary pixels by a parametric
Fourier series of degree six.

11.6.2 To demonstrate stability of the results with respect to the model used, MCM results
were also obtained for neighbouring degrees. For n = 5, the estimate 65.3 and standard
uncertainty 1.5 were obtained. For n= 7, the corresponding values were 65.0 and 1.5.
These estimates are consistent.

11.7 Interpretation of results

11.7.1 The volume or mass of an organ or tumour is generally obtained from a region
of interest (ROI) outlined on anatomical imaging data [46]. It is therefore possible to
estimate the outlining accuracy from consideration of factors that affect delineation. The
method used will depend largely on the information and resources available at the time
of outlining and the method employed by the operator or algorithm to define the ROI.
The process adopted here uses regression techniques to fit parametric Fourier functions
to the midpoints of the pixels approximating the outline while taking into account that
the midpoints are a crude guide to points on the boundary. A Fourier series of degree six
appears to capture the given outline quite satisfactorily bearing in mind that only data
points representing the midpoint of the boundary pixels are used.

11.7.2 The importance of the principles used to select a measurement model of an appro-
priate complexity cannot be overemphasized. Identification of the point where the RMSR
values start to saturate with respect to model complexity is generally reliable [24, 26, 27,
31, 32, 34, 76]. That approach is better than the use of traditional information criteria such
as AIC for the example considered here. The reason is believed to be the relative paucity of
profile boundary data, whereas the information criteria generally function better for large
quantities of data. However, it is accepted that identification of where the RMSR values
start to saturate is difficult to automate and there is much value in having the analysts
involved in such decision making.

11.7.3 To illustrate the numerical accuracy of the parametric Fourier representation, the
cross-sectional area of the fine pixelated image shown in figure 11.1 (right), taking each
pixel as unit size, is also analyzed. This contour consists of m= 113 darkly shaded pixels,
each of dimension 0.35× 0.35. Table 11.2 shows the results of fitting parametric Fourier
series to these data along with RMSR and the other model selection criteria.

The RMSR residuals again saturated essentially at degree 6. The information criteria were
consistent in selecting degree 4, again different from that according to RMSR saturation
but better than for the coarser-pixel data, presumably because of the larger quantity of
data involved. The corresponding area estimates shown in table 11.2 are corrected by the
factor (0.35)2 to take account of the relative pixel size between the two images.

11.7.4 The sequence of boundary coordinates might have associated correlation because
there is pattern in the arrangement of the corresponding pixels as a consequence of under-
lying smoothness in the tumour boundary. This correlation has no tangible effect on the
results presented here and is discussed in greater detail in [111, example E5.1].
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Table 11.2: Root-mean-square residuals, information criteria for various numbers, n, of
harmonics and tumour section area estimates bA, in the case of a finer-pixelated image

n RMSR AIC AICc BIC bA

1 1.28 91 92 101 65.6
2 0.76 39 40 53 64.8
3 0.67 35 39 54 65.2
4 0.42 26 31 49 66.1
5 0.43 30 37 56 66.1

6 0.40 33 43 63 66.1
7 0.39 36 50 71 66.1
8 0.39 40 58 78 66.0
9 0.40 44 68 86 66.0

10 0.41 48 78 94 66.0
11 0.41 51 90 102 66.1
12 0.41 55 103 110 66.0
13 0.42 59 119 118 66.0
14 0.40 62 137 125 65.9
15 0.40 66 158 133 66.0

11.7.5 The Fourier-series approach used is expected to be suitable for representing smooth
tumour outlines. For cases in which the outline has ‘sharp corners’, very fine pixelation
would be required to support such features. Moreover, Fourier series would not be able to
represent such features efficiently. Piecewise representations such as periodic splines [37]
would be beneficial in such circumstances although their use would not be so straightfor-
ward.
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12 Between-bottle homogeneity of reference materials

12.1 Preamble

12.1.1 An essential element in the production of certified reference materials (CRMs)
and proficiency test materials in batch form is the evaluation of the between-bottle ho-
mogeneity [107]. This form of (in)homogeneity accounts for the (small) differences in
the property of interest between the bottles (or more generally, items [66]) and including
it in the uncertainty budget of the property value ensures that the value and associated
uncertainty are valid for each bottle in the batch, rather than for the batch as a whole
[108, 107]. This example shows how a Bayesian hierarchical model can be used to de-
termine the between-bottle standard deviation of the amount fraction nitrogen in a set of
synthetic natural gas mixtures. The model is demonstrated for a data set involving nitrogen
where the classical analysis does not provide a solution.

12.2 Specification of the measurand

12.2.1 The measurand is the amount fraction nitrogen in a set of 10 synthetic natural
gas mixtures. This example focuses on determining an uncertainty component that char-
acterizes the between-bottle homogeneity in a batch of a reference material [66]. The data
from the homogeneity study are shown in table 12.1 [105]. For each of the 10 mixtures,
5 values for the amount fraction nitrogen were obtained (called “replicates”).

Table 12.1: Amount fraction of nitrogen in 10 gas mixtures expressed in cmolmol−1

Mixture Replicate 1 Replicate 2 Replicate 3 Replicate 4 Replicate 5

D520472 0.424 577 0.425 167 0.425 379 0.424 522 0.424 805
H95396 0.425 572 0.425 411 0.423 638 0.425 301 0.424 527
VSL190663 0.424 152 0.425 517 0.425 638 0.424 207 0.425 135
D520467 0.426 320 0.424 672 0.425 211 0.425 533 0.425 864
D520834 0.424 855 0.425 079 0.425 413 0.424 729 0.424 725
D520361 0.425 104 0.424 773 0.426 424 0.424 266 0.424 632
D520270 0.425 750 0.424 917 0.424 779 0.425 086 0.425 318
D520446 0.425 547 0.426 483 0.424 631 0.425 968 0.424 620
VSL190485 0.426 326 0.424 646 0.425 205 0.426 302 0.425 020
VSL190977 0.425 968 0.424 069 0.425 988 0.425 489 0.423 936

12.2.2 Traditionally, classical analysis of variance (ANOVA) is used [66, 59] for this pur-
pose, which is more fully described in [107]. The parameter of interest is the between-
group standard deviation, which in this specific case is called the between-bottle standard
deviation [107, 105]. Whereas classical ANOVA works well if the between-bottle homo-
geneity effect is of similar magnitude as the measurement repeatability or greater, diffi-
culties arise when the between-bottle homogeneity effect is (substantially) smaller than
the repeatability effect [105]. Such situations should be avoided [66, 107] but that is not
always possible [105].

12.2.3 Using the traditional ANOVA, the following values of sum-of-squares (SS), degrees
of freedom (ν), and mean squares (MS) are obtained (see table 12.2).
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Table 12.2: Analysis of variance results for the homogeneity data for the amount fraction
nitrogen

SS/(cmol mol−1)2 ν MS/(cmol mol−1)2

Between groups 2.92× 10−6 9 3.25× 10−7

Within groups 1.96× 10−5 40 4.90× 10−7

12.2.4 The standard deviation corresponding to the between group effect is, in this case,

sbetween =

√

√MSbetween −MSwithin

5
,

which cannot be computed since MSbetween is smaller than MSwithin.

12.2.5 The data set suffers from poor repeatability, but that does not rule out that the
between-bottle standard deviation is not negligible when compared to the uncertainty asso-
ciated with the batch average for the amount fraction nitrogen [66]. The use of a Bayesian
hierarchical model which, apart from the use of prior probability density distributions for
the parameters, is similar to the traditional one-way ANOVA model widely used in the eval-
uation of homogeneity studies [107], but does not suffer from the shortcomings of ANOVA
[48, 105].

12.3 Measurement model

12.3.1 The statistical model relating the observed amount fractions yi j for mixture i
(i = 1 . . . 10) and replicate j ( j = 1 . . . 5) to the mean amount fraction µ, the error in the
amount fraction in mixture i, Bi and the random measurement error ϵi j takes the form
[107]

yi j = µ+ Bi + ϵi j . (12.1)

The objective of the evaluation is to determine τ2 = Var(Bi) and σ2 = Var(ϵi j). If no
pooling is used, then σ2

i = Var(ϵi j), that is, a variance is computed for each mixture. In
a between-bottle homogeneity study, the assumption is typically made that the within-
group standard deviations are independent and identically distributed. In that case, σ is
the pooled within-group standard deviation. The Bayesian approach presented here also
makes such an assumption[105].

12.3.2 In this example, a Bayesian model is used, which implies that a joint prior proba-
bility density function (PDF) should be chosen for the model parameters. In the case that
the parameters are assumed to be mutually independent a priori, then this joint prior PDF
can be factored as three PDFs, one for each of the parameters. These probability density
functions are specified as follows:

µ∼ N(µ0,σ2
target), (12.2)

τ∼ Cauchy(0,τ0), (12.3)

σ ∼ Cauchy(0,σ0). (12.4)

The prior probability density function (hereafter prior) for µ is a normal distribution with
mean µ0 (elicited from the specification of the composition of the gas mixtures) and a
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standard deviation that reflects how close the amount fraction for the component of in-
terest of the batch is expected to be to the specified value (µ0 = 0.4250cmol mol−1). The
manufacturer specifies that the actual amount fraction will not differ more than 5 % from
the specified amount fraction. This specification is interpreted as a 95 % coverage interval,
and hence a relative standard deviation of 2.5 % is used. This standard deviation is suffi-
ciently large to ensure that the posterior probability density function (hereafter posterior)
will be dominated by the data [105, 106].

12.3.3 The prior for the between-bottle standard deviation τ is chosen to be the half-
Cauchy distribution with location parameter 0 and scale parameter τ0. The latter is ob-
tained from the specification for the production of the batch gas mixtures, which is usually
larger than the value expected for τ. The half-Cauchy distribution concentrates half of the
density between 0 and the scale parameter, taking only non-negative values [47].

12.3.4 A similar approach is used for the prior of σ. The scale parameter σ0 is set to
be equal to the repeatability standard deviations of the amount fractions in this type of
mixtures, as observed in previous measurements.

12.3.5 The likelihood is, conditionally on the parameters, a normal distribution [106]:

yi j|µ,τ,σ ∼ N(µ,τ2 +σ2). (12.5)

12.4 Implementation

12.4.1 The model as described in the previous sections is used with Bayes’ rule. From the
weakly informative priors for µ, τ, and σ (expressions (12.2)-(12.4)), using the data and
the likelihood, a joint posterior for the model parameters is obtained. From this posterior,
the value for τ, the between-bottle standard deviation, is calculated.

12.4.2 In Stan [104] code, the statistical model of the between-bottle homogeneity
study with pooling of the within-group standard deviations reads as

data {
int<lower=1> N;
int<lower=1> K;
matrix[N,K] y;

}
parameters {

real<lower=0> mu;
real<lower=0> tau;
real<lower=0> sigma;
vector[N] eta;

}
transformed parameters {

vector[N] theta = mu + tau * eta;
}
model {

// priors
mu ~ normal(0.4250, 0.0025 * 0.4250);
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tau ~ cauchy(0, 0.0015 * 0.4250);
sigma ~ cauchy(0, 0.0020 * 0.4250);
eta ~ normal(0, 1);
// likelihood
for (i in 1:N) { y[i,] ~ normal(theta[i], sigma); }

}

12.4.3 The statistical model consists of two blocks, which are briefly described below:

— The data block declares all data along with the explicit dimensions and variable
types. Here, the number of gas mixtures (“bottles”) N (N = 10) and the number of
replicates K (K = 5) are declared, following by the N×K matrix of observed amount
fractions y.

— In the parameters block, the model parameters mu, tau and sigma are declared,
as well as an additional variable eta, which is used for an efficient implementa-
tion of the hierarchical model [48]. Indeed, sampling eta is more efficient than
directly trying to obtain the group means. Instead, group means are calculated in
the transformed parameters block. Lastly, the model block specifies the statis-
tical model which includes the specifications of prior probability distributions for all
parameters as well as the likelihood.

12.4.4 Experience from previous between-bottle homogeneity studies for nitrogen in nat-
ural gas has indicated that the relative repeatability standard deviation for the nitrogen
amount fraction is 0.20 % and the specification for the between-bottle homogeneity is
0.30 %. The latter is interpreted as an expanded uncertainty with coverage factor k = 2,
thus τ/µ= 0.15% and σ/µ= 0.20%.

12.4.5 Running the Markov Chain Monte Carlo method (MCMC) sampling with 50000
iterations and a warm-up of 25000 iterations, using 4 chains [106, 105] yields the posterior
PDF for µ, τ, and σ shown in figure 12.1 and the following output:

# Inference for Stan model: anon_model.
# 4 chains, each with iter=5000; warmup=2500; thin=1;
# post-warmup draws per chain=2500, total post-warmup draws=10000.
#
# mean se_mean sd 2.5% 97.5% n_eff Rhat
# mu 0.42514 0 0.00011 0.42492 0.42536 9269 1.00007
# tau 0.00014 0 0.00011 0.00000 0.00039 6334 0.99994
# sig 0.00069 0 0.00007 0.00057 0.00085 12789 0.99985
#
# Samples were drawn using NUTS(diag_e) at Sun Sep 18 17:19:33 2022.
# For each parameter, n_eff is a crude measure of effective sample
# size, and Rhat is the potential scale reduction factor on split
# chains (at convergence, Rhat=1).

The uncertainty due to the MCMC is given in the column se_mean and is smaller than the
last digit stated in the columns mean and sd. Repeated runs of the MCMC are expected
reproduce these values with the number of decimals displayed.
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Figure 12.1: Posterior densities for the relative between-group and within-group standard
deviations for the amount fraction of nitrogen

12.4.6 A sensitivity analysis, aimed at assessing how influential the choices of the priors
are, revealed that the posterior of τ is quite sensitive with respect to the choice of the scale
parameter of the Cauchy distribution [105]. Yet, in this example, the scale parameter
was chosen based on the specification of the performance of the preparation process. As
this process had been used several times before, these specifications were deemed to be
adequate for eliciting this prior.

12.4.7 Where traditional ANOVA fails at quantifying the between-bottle homogeneity
effect, the Bayesian approach provides a probability density function for τ, from which
the between-bottle standard deviation can be derived. As the uncertainty evaluation in
accordance with the GUM [6] and ISO Guide 35 [66] requires only a point estimate for
the uncertainty component τ, there are several ways to obtain such an estimate from the
posterior probability density function – the mean, the mode, or the median. Given the
skewness of the posterior of τ/µ (figure 12.1), these three estimates are not equivalent:
the mode of the posterior of τ is 0.3 µmol mol−1, the median is 1.1 µmolmol−1, and the
mean is 1.4 µmolmol−1.

12.4.8 From the MCMC draws, the shortest coverage intervals can also be obtained. The
following code, requiring the R packages HDInterval and rstan performs the calcula-
tion:

require(HDInterval)
require(rstan)
fit.mcmc = extract(fit)
tau.hdi = hdi(fit.mcmc$tau/fit.mcmc$mu, credMass = 0.95)
sigma.hdi = hdi(fit.mcmc$sigma/fit.mcmc$mu, credMass = 0.95)

12.4.9 The third line converts the output from Stan into the appropriate form and then
the function hdi is used to compute the highest posterior density intervals [75]. The
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lower (L) and upper (H) limits of the 95 % highest posterior density intervals are shown
in table 12.3.

Table 12.3: Highest posterior density intervals for the uncertainty components τ/µ and
σ/µ.

Parameter L95% H95 % Unit

τ/µ 0.0000 0.0008 1
σ/µ 0.0013 0.0020 1

12.5 Reporting the result

12.5.1 The primary result is the value for the between-bottle standard deviation τ. In a
previous paper [105], the mean was chosen as estimate for τ, which is the most cautious
option (it leads to the largest value for this uncertainty contribution). For data sets where
the between-bottle variability is larger, the differences between the three options become
smaller.

12.5.2 Alternatives to using the mean include the use of the median or mode of the
posterior probability density function for τ. Even τ = 0 could be justified, as the lower
end of the 95 % highest posterior density interval is practically zero.

12.5.3 There are different choices for the credible interval as well. The example pro-
vides two intervals, the shortest in table 12.3 and the probabilistically symmetric in 12.4.5.
Shortest intervals are generally more appropriate for skewed posteriors, as in the case of
the posterior for τ.
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13 Measurement of Celsius temperature using a resistance ther-
mometer

13.1 Preamble

13.1.1 This example is concerned with the measurement of Celsius temperature by com-
paring the resistance of an industrial platinum resistance thermometer with that of a stan-
dard resistor using a resistance bridge. The measurement of a single Celsius temperature
(see 13.2) is described by an implicit univariate measurement model [12, CLause 4.1, note
2] and that of several temperatures (see 13.3) by an implicit multivariate measurement
model [7, clause 6.3.1]. The example illustrates the treatment of these (univariate and
multivariate) measurement models using the law of propagation of uncertainty (LPU) gen-
eralized to implicit measurement models and models with more than one measurand [7, 6].

13.1.2 The application of LPU in this example depends on the linearization of a non-
linear (univariate or multivariate) measurement model. Ideally, either a statement should
be made that any replacement of a non-linear measurement model by a linear model has
been checked to be acceptable, or that such a check has not been made.

13.2 Measurement of a single Celsius temperature

13.2.1 The Celsius temperature θ is measured by comparing the resistance R(θ ) of a
resistance thermometer with the resistance RS of a standard resistor using a resistance
bridge. In the temperature interval from 0 ◦C to 30 ◦C, the resistance of the thermometer
is approximated by a parabolic function of its Celsius temperature θ :

R(θ ) =
�

1+ Aθ + Bθ2
�

R0, (13.1)

where R0, A and B are determined from a calibration of the thermometer. Estimates of R0,
A and B and the associated standard uncertainties are given in table 13.1, and the non-zero
correlation coefficients associated with pairs of the estimates in table 13.2.

Table 13.1: Estimates of the input quantities X ≡ (R0, A, B, RS, r)⊤ for the measurement
of a single Celsius temperature and associated standard uncertainties (13.2.1, 13.2.2 and
13.2.3)

bR0/Ω bA/°C
−1
bB/°C−2
bRS/Ω br/1

Estimate 99.99610 0.003 9096 −6.0× 10−7 99.999 47 1.078005 7
Std unc 0.00050 0.000 0027 1.1× 10−7 0.000 10 0.000 0050

13.2.2 The estimate bRS and the associated standard uncertainty, determined by calibra-
tion, are given in table 13.1. RS is independent of the parameters R0, A and B.

13.2.3 The quantity measured with the resistance bridge is the resistance ratio

r =
R(θ )
RS

. (13.2)

The measured value br and the associated standard uncertainty are given in table 13.1. The
resistance ratio is independent of the parameters R0, A and B of the resistance thermometer
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and the resistance RS of the standard resistor; there are thus no further non-zero correlation
coefficients beyond those given in table 13.2.

Table 13.2: Non-zero correlation coefficients associated with pairs of estimates of the
input quantities for the measurement of a single Celsius temperature (13.2.1, 13.2.2 and
13.2.3)

bR0 bA bB

bR0 1 −0.155 0.092
bA 1 −0.959
bB 1

13.2.4 By combining expressions (13.1) and (13.2), the following measurement model
for the Celsius temperature θ is obtained:

h(Y, X) =
�

1+ Aθ + Bθ2
�

R0 − rRS = 0. (13.3)

The measurement model is an implicit univariate model with N = 5 input quantities
X ≡ (R0, A, B, RS, r)⊤ and a single output quantity (measurand) Y = θ .

13.2.5 Although the above measurement model can be solved for θ by considering the
roots of a quadratic equation, the numerical evaluation of the transformed model can suffer
from subtractive cancellation, and the evaluation of sensitivity coefficients is made more
difficult by the transformation. Thus, measurement model 13.3 will be treated as implicit.

13.2.6 The estimate y ≡ bθ of the Celsius temperature generating the measured resis-
tance ratio br is found by inserting the estimates given in table 13.1 into equation 13.3 and
solving this equation for θ . The solution obtained is bθ = 20.0232 ◦C.

13.2.7 The standard uncertainty uy ≡ u(bθ ) associated with the estimate y is evaluated
using [7, expression (8)], namely

C y V yC⊤y = C x V x C⊤x (13.4)

with the matrices of first-order partial derivatives given as follows:

C y =
∂ h
∂ Y
=
∂ h
∂ θ
= (A+ 2Bθ )R0 ,

and

C x =
∂ h
∂ X
=
�

∂ h
∂ R0

,
∂ h
∂ A

,
∂ h
∂ B

,
∂ h
∂ RS

,
∂ h
∂ r

�

=
�

1+ Aθ + Bθ2, R0θ , R0θ
2, − r, − RS

�

.

These expressions are evaluated at the estimates of the input quantities given in table 13.1
and the corresponding estimate of the output quantity, which gives the following sensitivity
matrices:

C y = 0.389Ω ◦C−1

and

C x = C y

�

1.078, 2.002× 103Ω ◦C, 4.009× 104Ω◦C2, −1.078, −99.999Ω
�

.
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The elements of the covariance matrix V x associated with the estimates of the input quan-
tities are calculated from the standard uncertainties in table 13.1 and the correlation
coefficients in table 13.2. The result obtained after matrix algebra of expression (13.4)
is u(bθ ) = 0.0045 ◦C.

13.3 Measurement of several Celsius temperatures

13.3.1 The resistance thermometer, standard resistor and resistance bridge described
in 13.2 are used to measure the resistance ratios r1, . . . , r10 generated by ten Celsius tem-
peratures θ1, . . . ,θ10.

13.3.2 The estimates bR0, bA, bB and bRS, and the associated standard uncertainties remain as
before (table 13.1) and the estimates br1, . . . ,br10 and their associated standard uncertainties
are shown in table 13.3. The only non-zero correlation coefficients associated with pairs
of the estimates remain those given in table 13.2. The resistance ratios are assumed to
be independent, an assumption that is valid if the magnitudes of the random errors in the
measured resistance ratios dominate.

Table 13.3: Estimates of the resistance ratios for the measurement of several Celsius tem-
peratures and associated standard uncertainties (13.3.2)

br1 br2 br3 br4 br5

Estimate 1.000005 3 1.015005 4 1.030005 5 1.045005 6 1.060005 6
Std unc 0.000005 0 0.000005 0 0.000005 0 0.000005 0 0.000005 0

br6 br7 br8 br9 br10

Estimate 1.078005 7 1.090005 8 1.105005 9 1.120006 0 1.078005 7
Std unc 0.000005 0 0.000005 0 0.000005 0 0.000005 0 0.000005 0

13.3.3 Each resistance ratio r j is related to the corresponding Celsius temperature θ j by
an expression of the form (13.3):

(1+ Aθ j + Bθ2
j )R0 − r jRS = 0, j = 1, . . . , 10. (13.5)

There are N = 14 input quantities X ≡ (R0, A, B, RS, r1, . . . , r10)
⊤ and m= 10 output quan-

tities Y ≡ (θ1, . . . ,θ10)
⊤, all of which are related by the following implicit multivariate

measurement model:





h1(Y , X)
...

h10(Y , X)



≡





R0

�

1+ Aθ1 + Bθ2
1

�

− r1RS
...

R0

�

1+ Aθ10 + Bθ2
10

�

− r10RS



= 0.

As noted in clause 13.2.5, transformation of the implicit measurement model (13.5) into
an explicit form is possible but inadvisable.

13.3.4 The estimates y = (bθ1, . . . , bθ10) of the Celsius temperatures Y are given by insert-
ing the estimates given in columns 1 to 4 of table 13.1 and in table 13.3 into equations
(13.5) and solving these equations. These estimates are given in table 13.4.
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Table 13.4: Estimates of the output quantities Y and associated standard uncertainties for
the measurement of several Celsius temperatures (13.3.4 and 13.3.5)

bθ1
bθ2
bθ3
bθ4
bθ5
bθ6
bθ6
bθ8
bθ9
bθ10

Estimate/◦C 0.0100 3.8491 7.6928 11.5410 15.3938 20.0232 23.1131 26.9797 30.8509 20.0232
Std. unc./◦C 0.0018 0.0027 0.0040 0.0046 0.0047 0.0045 0.0046 0.0060 0.0089 0.0045

Table 13.5: Correlation coefficients associated with pairs of estimates of the output quan-
tities Y for the measurement of several Celsius temperatures (13.3.5)
bθ1
bθ2
bθ3
bθ4
bθ5
bθ6
bθ7
bθ8
bθ9
bθ10

bθ1 1 0.252 0.127 0.079 0.059 0.054 0.056 0.054 0.050 0.054
bθ2 1 0.815 0.800 0.755 0.580 0.312 −0.092 −0.358 0.580
bθ3 1 0.902 0.868 0.691 0.400 −0.057 −0.365 0.691
bθ4 1 0.909 0.766 0.495 0.040 −0.281 0.766
bθ5 1 0.847 0.629 0.208 −0.115 0.847
bθ6 1 0.841 0.549 0.264 0.918
bθ7 1 0.812 0.613 0.841
bθ8 1 0.909 0.549
bθ9 1 0.264
bθ10 1

13.3.5 The covariance matrix C y associated with y is evaluated using expression (13.4)
where C y and C x are sensitivity matrices given by evaluating C Y and C X , respectively, at
the estimates of the input and output quantities. C Y is a diagonal matrix of dimension 10×
10 with diagonal entries R0(A+2Bθ1), . . . , R0(A+2Bθ10). C X is a matrix of dimension 10×
14 given by

C X =
�

C (1)X C (2)X

�

,

where

C (1)X =





1+ Aθ1 + Bθ2
1 R0θ1 R0θ

2
1 −r1

...
...

...
...

1+ Aθ10 + Bθ2
10 R0θ10 R0θ

2
10 −r10





is a matrix of dimension 10× 4, and C (2)X is a diagonal matrix of dimension 10× 10 with
diagonal elements all equal to −RS. The covariance matrix V x is calculated from the stan-
dard uncertainties given in columns 1 to 4 of table 13.1 and in table 13.2. The standard
uncertainties associated with the estimates of the Celsius temperatures and the correlation
coefficients associated with pairs of estimates, derived from the matrix C y , are given in ta-
ble 13.4 and table 13.5, respectively. A numerically stable method to form the covariance
matrix C y is given in [7, annex B].

13.3.6 The results given in table 13.4 and figure 13.1 show how the standard uncertainty
u(bθ j) varies with the estimate bθ j of Celsius temperature θ j . The uncertainty is smallest
around 0 ◦C and increases rapidly for temperatures greater than 25 ◦C. This effect is due
to the fact that the resistance thermometer was calibrated at the temperatures 0 ◦C, 15 ◦C,
20 ◦C and 25 ◦C, and that the Celsius temperature 0 ◦C during calibration was generated
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using an ice bath with a standard uncertainty three times smaller than those associated
with the other three temperatures, which were generated using an oil bath.

NOTE In figures 13.1 and 13.2 the straight-line segments joining the plotted points are included
for purpose of visualization.

13.3.7 Using the results given in the final column of table 13.5, figure 13.2 shows how
the correlation coefficient associated with the pair of estimates bθ j and bθ10 of Celsius tem-

peratures θ j and θ10 = 20 ◦C varies with bθ j , j = 1, . . . , 9. The correlation coefficient has a

maximum for bθ j = bθ6 and approaches zero as the absolute difference |bθ j − bθ10| becomes
large. The example demonstrates that quantities measured with the same instrument can
be highly correlated.

Figure 13.1: Standard uncertainty u(bθ j) associated with the estimate bθ j of Celsius
temperature θ j (13.3.6)
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Figure 13.2: Correlation coefficient associated with the pair of estimates bθ j and bθ10 of Celsius
temperatures θ j and θ10 = 20 ◦C (13.3.7)
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14 Activity of a radioactive source corrected for decay

14.1 Preamble

14.1.1 A 207Bi (bismuth-207) standard is used at a time t1 to calibrate a detector. The
calibration certificate of this radioactive source reports an activity bA0 at the reference date
t0, with associated standard uncertainty u(bA0).

14.1.2 This example provides an estimate bA1 of the activity A1 at time t1 and evaluates
the associated standard uncertainty u(bA1), illustrating the application of the law of propa-
gation of uncertainty (LPU). Because the model is non-linear in time and half-life T1/2, the
example also verifies whether the LPU is adequate for this task.

14.2 Measurement model

The measurement model for the activity A1 at time t1 is

A1 = f (A0, T1/2,∆t) = A0 exp

�

−
∆t ln 2

T1/2

�

, (14.1)

with∆t = t1− t0. Both quantities t0 and t1, and thus∆t, are considered to have negligible
uncertainty.

Introducing the decay correction E = exp
�

−∆t ln 2
T1/2

�

,

A1 = A0E. (14.2)

14.3 Uncertainty evaluation

14.3.1 Estimates bA0 and bT1/2 of A0 and T1/2 and their associated standard uncertainties
are taken from a calibration certificate and the literature [18], respectively:

bA0 = 11.450 kBq, u(bA0) = 0.050kBq,

bT1/2 = 32.9 a, u(bT1/2) = 1.4 a

and ∆t is taken as ∆t = 2.73 a. The symbol a is used for the year in accordance with ISO
80000-3:2020 [65]. No further information is taken into consideration.

14.3.2 Substitution of the above values into measurement model (14.1) gives

bA1 = 11.450 kBq× exp
�

−2.73 a× ln 2
32.9a

�

= 0.94411 bA0 = 10.810kBq.

Applying the LPU [6, Clauses 5.1.2, 5.1.3] to measurement model (14.1) gives

u2(bA1) = u2
bA0
(bA1)+u2
bT1/2
(bA1) with u

bA0
(bA1) = |cbA0

|u(bA0), u
bT1/2
(bA1) = |cbT1/2

|u(bT1/2).

c
bA0

and c
bT1/2

are sensitivity coefficients given by differentiating the measurement model (14.1),
namely,

c
bA0
=
∂ f
∂ A0

= E = 0.944 11,

c
bT1/2
=
∂ f
∂ T1/2

= bA1
∆t ln2
bT2

1/2

= 10.810kBq×
2.73 a× ln 2
(32.9a)2

= 0.018 898kBq a−1,
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where the partial derivatives are evaluated at the estimates bA0 and bT1/2. Thus,

u
bA0
(bA1) = 0.944 11× 0.050 kBq= 0.0472kBq,

uT1/2
(bA1) = 0.018 898kBq a−1 × 1.4 a= 0.0265kBq

and hence

u(bA1) =
�

(0.0472)2 + (0.0265)2
�1/2

kBq= 0.054 kBq.

14.3.3 To investigate whether the LPU is adequate in this case, the behaviour of the
non-linear model (14.1) is compared with the linearized model in the neighbourhood of
bT1/2 = 32.9 a. The linearized model is

A′1 = flin(A0, T1/2) = bA1 + c
bA0
(A0 − bA0) + c

bT1/2
(T1/2 − bT1/2). (14.3)

The criterion used here for adequacy of LPU is that the values of the non-linear model (14.1)
and the linearized model (14.3) differ negligibly in the neighbourhood of bT1/2. This
neighbourhood is taken as comprising values of the half-life T1/2 up to several multi-
ples of u(bT1/2) away from its estimate. Accordingly, the linearized and the exact model
values are tabulated at several positive and negative multiples of u(bT1/2) = 1.4 a away
from bT1/2 = 32.9a. See table 14.1. The approach used is comparable to that in [10, annex
F.2]; see also [6, clause 5.1.3, note 2].

Table 14.1: Estimates bA′1 and bA1 from linearized and exact models for 207Bi decay, respec-
tively

bT1/2/a bA
′
1/kBq bA1/kBq Difference/kBq

28.7 10.731 10.719 0.011
30.1 10.757 10.752 0.005
31.5 10.784 10.782 0.001
32.9 10.810 10.810 0.000
34.3 10.836 10.835 0.001
35.7 10.863 10.859 0.004
37.1 10.889 10.881 0.009

14.3.4 As seen from table 14.1, the values of the linearized model differ from the non-
linear model by at most 0.011 kBq for values of the half-life between T1/2 − 3u(T1/2)
and T1/2 + 3u(T1/2). This difference is considerably smaller than u(bA0) = 0.050kBq and
u(bA1) = 0.054 kBq and therefore it can be concluded that the validity of LPU is confirmed
in this case.

14.4 Discussion

14.4.1 The time interval ∆t = 2.73 a is small compared with the radionuclide half life
bT1/2 = 32.9 a. As a consequence, the value 0.944 11 of E in expression (14.1) is reasonably
close to unity, and so u(bA1) differs little from u(bA0).
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14.4.2 When the time difference ∆t becomes closer to bT1/2, LPU may not provide ac-
ceptable results for 207Bi as judged by such a check. This happens because the relative
uncertainty of its half-life of 4 % is large and the range of values from bT1/2 − 3u(bT1/2) to
bT1/2+3u(bT1/2) is more likely to highlight non-linearities. However, in most cases encoun-
tered in radionuclide metrology and its applications, half-lives are known more precisely
(relative uncertainty of 0.5 % or better) and LPU can be used safely unless∆t/bT1/2 is very
large like in 14C dating of very old samples.

When∆t/bT1/2 and the relative uncertainty of the half-life u(bT1/2)/bT1/2 are both sufficiently
small, LPU can be used safely. In practice, the relative uncertainty of the decay correction

u(E)/E = ln 2
�

u(bT1/2)/bT1/2

�

∆t/bT1/2,

is a good measure of the non-linearity of the model. It can be shown that in general,
when the relative uncertainty of the decay correction u(E)/E reaches 1 %, it is important
to check the validity of LPU as shown in the present example and compare the differ-
ence between the linearized and exact models with the uncertainty of the activity in order
to decide whether the non-linear effect on LPU is significant or not. In the affirmative,
JCGM 101:2008 [12], concerned with the propagation of distributions using a Monte Carlo
method, should be applied.
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15 Breaking force of steel wire rope

15.1 Preamble

With thousands of workers transported up and down mine shafts each day (figure 15.1),
measuring the safety of hoisting ropes forms an integral part of mine management. Strict
laws cover the maintenance and testing of steel wire rope, the latter focussing mainly on
the destructive testing of these ropes. The source of this information and the example is
the Rope Testing Laboratory of the Council for Scientific and Industrial Research, South
Africa (CSIR), from whom permission was obtained to use the example.

Figure 15.1: Steel wire rope used for hoisting in vertical mine shafts

15.2 Measurement model

15.2.1 The measurand is the breaking force of a sample constituting the length of a
piece of rope of a particular type. An observation of the breaking force cannot be repeated
since the test is destructive on the sample. Because it is impossible to make a series of
observations of the measurand under repeatability conditions, one observation is instead
made of each of a number, n, of samples given by cutting pieces from the same rope. The
pragmatic approach is therefore taken of testing six pieces from the same coil of rope and
accepting that the variability across the six specimens will be embedded in the variability
of the test results.

15.2.2 The breaking forces that are recorded are influenced by two effects: the variability
of the samples due to the inhomogeneity of the rope, and intrinsic measurement effects,
essentially measurement corrections, such as resolution of the force measuring system.

Following the provisions of JCGM GUM-6:2020 [10], n = 6 breaking force observation
equations are

Fi = F0 + B + Bref + eres + eT + Ei , i = 1, . . . , n, (15.1)

where
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the Fi denotes quantities for which the breaking force observations are independent
realizations,

F0 is the measurand, breaking force,

B is the error of the test machine load cell,

Bref is the error of the reference load cell,

eres is the resolution error of the force measuring system,

eT is the temperature error,

Ei are the measurement errors associated with the Fi .

15.3 Assignment of PDFs

15.3.1 Breaking force observations

The available data comprise n= 6 observations of the Fi ,

bF
⊤
= [bF1, . . . , bF6] = (10006 10 007 10005 10 008 10003 10 005)kN,

with associated errors Ei assumed to be independent, normal random variables with mean 0 kN
and unknown standard deviation σ.

The data bFi have mean 10 005.7 kN and standard deviation 1.8 kN. This mean has asso-
ciated standard uncertainty 1.8 kN/

p
6= 0.7kN. Figure 15.2 shows a normal distribution

with mean 10 005.7 kN and standard deviation 0.7 kN as the full blue curve. An alternative
choice of distribution, the Weibull, displayed as the broken black curve, is considered in
clause 15.6.

Figure 15.2: Normal distribution (full blue curve) and Weibull distribution (broken black
curve) fitted to the breaking force data

Using the provisions of [12, clause 6.4.7]), the mean 10 005.7 kN and standard devia-
tion 0.7 kN with ν = n − 1 = 5 degrees of freedom are used as the parameters of the
resulting t distribution for breaking force F .

15.3.2 Correction effects

All other input quantities, representing measurement corrections, are modelled on the
basis of available information with rectangular distributions centred at zero and having
specified semi-widths: see table 15.1.
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Table 15.1: Rectangular PDFs assigned to correction effects for the rope breaking-force
model on the basis of available information

Quantity Semi-width/kN Standard uncertainty/kN

B 6.8 3.9
Bref 8.2 4.7
eres 8.7 5.0
eT 10.2 5.9

15.4 JCGM 100:2008 uncertainty framework (GUF)

15.4.1 The measurand F0 in expression (15.1) does not appear as the subject (com-
pare [91]). Making it so as in [6] yields the measurement model

F0 = F − B − Bref − eres − eT − E, (15.2)

using which the estimate of F0 is 10 005.6 kN and applying the law of propagation of
uncertainty (LPU) gives, using the standard uncertainty associated with the Ei as identical
to that of the Fi and hatted symbols as denoting the estimates of the various quantities,

u(bF0) =
�

u2(bF) + u2(bB) + u2(bBref) + u2(beres) + u2(beT ) ++u2(bE)
�1/2

= 9.9 kN.

Since all but one of the input quantities have infinite degrees of freedom supporting their
standard uncertainty estimates, the Welch-Satterthwaite formula [6, expression (G.2a)] in
JCGM 100:2008 yields

νeff = (n− 1)

�

u(cF0)

u(bF)

�4

> 105.

As a consequence, the measurement result is a breaking force of bF = 10 005.6kN with an
expanded uncertainty U(bF) = 19.4 kN corresponding to a coverage factor k of 1.96 at a
level of confidence of 95 %.

15.4.2 Following the provisions of JCGM 100:2008, a t-distribution with νeff degrees of
freedom [6, annex G.3] is assigned as the PDF for F0. Since νeff is so large, the t distribution
could be taken as normal for practical purposes, as demonstrated by the coverage factor
being equal to three significant decimal digits to that for a normal distribution for the same
level of confidence.

15.5 Monte Carlo method (MCM)

15.5.1 To validate the results of clause 15.4, MCM was applied following the provisions
of [12]. Its application in this example consists of taking 106 draws from the probability
distributions considered in clause 15.4 and using the measurement model for each set of
draws to provide a corresponding value for the measurand F0. For this simple measurement
model, the Monte Carlo calculation to provide this sample of the probability distribution for
F0 took 0.2 s using MATLAB version ‘R2023b Update 3 (23.2.0.2409890) 64-bit (win64)
October 4, 2023’.
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15.5.2 The mean and standard deviation of this MCM sample of F0 are 10005.7 kN and
10.1 kN, respectively, and the equiprobabilistic 95 % coverage interval whose endpoints are
the 2.5 % and 97.5 % quantiles of the sample ranged from 9986.0 kN to 10 025.3 kN. Since
this interval is almost exactly symmetric about the mean, half the length of this interval is
taken as an expanded uncertainty, namely, U(bF0) ≈ 19.6kN.

15.5.3 These results were confirmed to the number of significant decimal digits quoted
by re-running the Monte Carlo calculation with 107 trials, which took 1.6 s.

15.6 Discussion

15.6.1 The results provided by the GUF and MCM, having respective estimates 10005.6 kN
and 10 005.7 kN and associated standard uncertainties 9.9 kN and 10.1 kN compare well,
although the GUF probability density function (PDF) is slightly more peaked than that
provided by MCM: figure 15.3. Since the Monte Carlo method can be regarded as a refer-
ence [33], judging by the considerable extent of agreement with the results from applying
JCGM 100:2008 it can be concluded that the latter for the above set of data is valid.

Figure 15.3: PDF for the breaking force obtained using the GUF (blue curve) and scaled
histogram from MCM using the information summarized in table 15.1

15.6.2 A normal distribution was assigned to the breaking force F in clause 15.3.1 since
it is common practice in testing laboratories when preparing uncertainty budgets in the
area. However, for destructive testing, as here, a Weibull distribution is often used es-
pecially in research studies in the area [74, 83]. Accordingly, a Weibull distribution was
alternatively assigned to the quantity F for this purpose. Typically, such a distribution
is conventionally fitted to the data for F and the mean and standard deviation extracted,
which yields in this case exactly the same mean and standard uncertainty as for the normal
distribution. There are readily discernible differences between the distributions, shown in
figure 15.2: for instance, whilst the normal distribution is symmetric about its mean, the
Weibull distribution displays some asymmetry.

15.6.3 The question may be raised as to what are the conditions in which to use the
Weibull distribution instead of the normal. For the data analyzed here, the uncertainty
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contribution from the six observations was virtually negligible compared with those from
the correction effects. That contribution, 0.7 kN is to be compared with a the standard un-
certainty, about 10 kN, associated with the estimates of the measurand. Bearing in mind
that the standard uncertainties associated with the input estimates are combined in quadra-
ture, that contribution influences the combined standard uncertainty by only 0.2 %.

15.6.4 In cases where this contribution is more meaningful, it is recommended to use
the Weibull distribution, which seems state of the art in the area [83]. It is to be noted that
since the means of these fitted distributions are identical, as are their standard deviations,
the GUF would yield identical results for the two distributions. Conversely, MCM would
deliver different results since the PDF for the first input quantity would be different. More
trust could be placed in the MCM results since all conditions [12, clause 5.7] required for
the GUF to apply would not hold.
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16 Comparison loss in microwave power meter calibration

16.1 Preamble

16.1.1 This example illustrates the evaluation of measurement uncertainty for a power
ratio that can occur during a microwave power meter calibration. Four methods for eval-
uating the uncertainty are considered:

1. JCGM 100:2008 uncertainty framework (GUF) with first-order terms (GUF1);

2. GUF with higher-order terms (GUF2);

3. Monte Carlo method (MCM);

4. analytic calculation.

The example includes scenarios where the Central Limit Theorem (CLT) [6, Annex G.2]
holds from acceptably to poorly, or does not hold at all. Whilst the use of GUF yields correct
estimates and standard uncertainties – provided that higher-order terms are taken into
account – it does not in general provide reliable coverage intervals. MCM instead provides
realistic uncertainties and coverage intervals for all scenarios. Clause 16.5 contains some
information that is relevant to the analytic calculations presented in this example that may
be of interest to advanced practitioners of uncertainty calculations. This information can
be disregarded by other (more general) practitioners, who can therefore ignore references
in the example to that clause.

16.1.2 Microwave power meter calibration involves the measurement of several voltage
reflection coefficients. Voltage reflection coefficients are complex-valued quantities. Man-
ufacturers of microwave power meters usually try to produce power meters where these
voltage reflection coefficients are as close to 0+ j0, where j2 = −1, as possible. In practice,
the absolute values for both the real and imaginary components of these voltage reflection
coefficients are expected to be less than 0.050. Hence, this example considers absolute
values for these components between zero and 0.050.

16.2 Formulation

16.2.1 During the calibration of a microwave power meter, the power meter and a stan-
dard power meter are connected in turn to a stable signal generator. The power absorbed
by each meter will in general be different because their complex input voltage reflection
coefficients are not identical. The ratio Y of the power PM absorbed by the meter being
calibrated and that, PS, by the standard meter is [98]

Y =
PM

PS
=

1− |ΓM|2

1− |ΓS|2
×
|1− ΓSΓG|2

|1− ΓMΓG|2
, (16.1)

where ΓG is the voltage reflection coefficient of the signal generator, ΓM that of the meter
being calibrated and ΓS that of the standard meter. This power ratio is an instance of
“comparison loss” [5, 67].

16.2.2 Consider the case where the standard and the signal generator are reflectionless,
that is, ΓS = ΓG = 0 + j0, and measured values are obtained of the real and imaginary
parts X1 and X2 of ΓM = X1 + jX2. Since |ΓM|2 = X 2

1 + X 2
2 , formula (16.1) becomes

Y = 1− X 2
1 − X 2

2 . (16.2)
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16.2.3 Given respectively are estimates x1 and x2 of the quantities X1 and X2 from mea-
surement and the associated standard uncertainties u(x1) and u(x2). X1 and X2 are often
not independent. Denote by u(x1, x2) the covariance associated with x1 and x2. Equiva-
lently, u(x1, x2) = r(x1, x2)u(x1)u(x2), where r = r(x1, x2) denotes the associated corre-
lation coefficient [6, clause 5.2.2].

NOTE The practitioner may sometimes have difficulty in quantifying the covariance. In such cases,
the uncertainty evaluation can be repeated with various trial numerical values for the correlation
coefficient in order to study its effect. This example carries out calculations using a correlation
coefficient of zero and of 0.9 (compare 16.2.7).

16.2.4 On the basis of [12, clause 6.4.8], X = (X1, X2)⊤ is assigned a bivariate nor-
mal probability density function (PDF) in X1 and X2, with expectation and covariance
matrix
�

x1
x2

�

,

�

u2(x1) ru(x1)u(x2)
ru(x2)u(x1) u2(x2)

�

. (16.3)

16.2.5 Because the magnitudes of X1 and X2 in expression (16.2) are in practice small
compared with unity, the resulting Y is close to unity. Results are accordingly expressed in
terms of the quantity

δY = 1− Y = X 2
1 + X 2

2 , (16.4)

taken as the measurement model. For physical reasons, 0≤ Y ≤ 1, and hence 0≤ δY ≤ 1.

16.2.6 The determination of an estimate δy of δY , the associated standard uncertainty
u(δy) and a coverage interval for δY will be considered for choices of x1, x2, u(x1), u(x2)
and r(x1, x2). All quantities have dimension 1.

16.2.7 Six cases are considered, in which x2 is taken as zero and u(x1) = u(x2) = 0.005.
The first three cases correspond to x1 = 0, 0.010 and 0.050, each with r = 0. The other
three cases correspond to taking the same x1, but with r = 0.9. The various numerical
values of x1 (comparable to those occurring in practice) are used to investigate the extent
to which the results obtained using the considered approaches differ. In these six cases, x2
is set to zero. It would be equally applicable to set x1 to zero and use differing values for x2
in these examples. In most practical situations, it is expected that −0.05 ≤ x1 ≤ 0.05 and
−0.05≤ x2 ≤ 0.05.

16.2.8 For the cases in which r = 0, the covariance matrix given in formulæ (16.3)
reduces to a diagonal matrix with entries

�

u2(x1), u2(x2)
�

and the corresponding joint
distribution for X1 and X2 to the product of two univariate normal distributions for X i ,
for i = 1, 2, with expectation x i and standard deviation u(x i).

16.3 Propagation and summarizing: r = 0

16.3.1 General

16.3.1.1 The evaluation of uncertainty is treated

1. analytically (for purposes of comparison),
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2. using the GUF and

3. using the MCM.

NOTE These approaches do not constrain δY to be less than or equal to unity. However, for
sufficiently small uncertainties u(x1) and u(x2), as here, the PDF for δY may adequately be ap-
proximated by a simpler PDF defined over all non-negative values of δY . A rigorous treatment,
using Bayesian inference [113], which applies regardless of the magnitudes of u(x1) and u(x2), is
possible, but beyond the scope here. Also see [12, Scope, NOTE 2].

16.3.1.2 δy and u(δy) can generally be formed analytically as the expectation and stan-
dard deviation of δY , as characterized by the PDF for δY . See 16.5.2. The PDF for δY can
be formed analytically when x1 = 0 and, in particular, used to determine the endpoints of
the shortest 95 % coverage interval in that case. See 16.5.3.

16.3.1.3 GUF with first-order terms (GUF1) and with higher-order terms (GUF2) is ap-
plied for each of the three estimates x1 in the uncorrelated case. See 16.5.4.

16.3.1.4 GUF1 (see clause 7.3.1) yields

δyGUF1 = x2
1 + x2

2 , (16.5)

u2(δyGUF1) = u2(x2
1) + u2(x2

2) = 4x2
1u2(x1) + 4x2

2u2(x2). (16.6)

16.3.1.5 GUF2 (see clause 7.3.2) yields

δyGUF2 = x2
1 + x2

2 + u2(x1) + u2(x2), (16.7)

u2(yGUF2) = 4x2
1u2(x1) + 4x2

2u2(x2) + 2u4(x1) + 2u4(x2). (16.8)

Considering higher-order terms in the Taylor expansion of the measurement model impacts
not only on the standard uncertainty, but on the estimate [72]. This important fact is not
taken into account in JCGM 100:2008 (see [6, clause 5.1.2]).

16.3.1.6 MCM is applied in each case with M = 106 trials.

16.3.2 Input estimate x1 = 0

16.3.2.1 For the input estimate x1 = 0, GUF2 and MCM only can be used, because the
partial derivatives of δY with respect to X1 and X2, evaluated at X1 = x1 and X2 = x2, are
identically zero when x1 = x2 = 0. Accordingly, first-order terms in the Taylor expansion
would be identically zero. Thus, if GUF1 were applied, both the estimate and the associated
standard uncertainty would incorrectly be computed as zero!

NOTE A similar difficulty would arise for x1 close to zero.

16.3.2.2 Figure 16.1 shows the results for δY determined

1. analytically (the exponentially decreasing curve for δY ≥ 0 and zero elsewhere),

2. using GUF2 (bell-shaped curve) and

3. using MCM (scaled frequency distribution shown as a histogram).
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NOTE In all figures, normal PDFs are depicted for the GUF results. These PDFs are those that
would hold for the measurand should the CLT be applicable. As such, they are to be understood as
a mere graphical tool useful to assess visually the adequacy of the CLT approximation.

Figure 16.1: Results for the model of comparison loss in the case x1 = x2 = 0, with
u(x1) = u(x2) = 0.005 and r = 0 (16.3.2.2, 16.3.2.5, 16.3.2.8)

16.3.2.3 Since the partial derivatives of the model function (16.4) of order higher than
two are all identically zero, GUF2 takes all Taylor-series terms, that is, the full non-linearity
of the problem, into account. Thus, the GUF2 solution is the best that is possible within
the GUF.

16.3.2.4 The analytic solution is a particular chi-squared distribution—the sum of squares
of two standard normal variables (see 16.5.3). It is seen in the figure that this PDF is very
different from the normal PDF assumed when using GUF2. It can therefore be concluded
that the CLT approximation is inadequate and, as a consequence, it can be expected that,
although the estimate and associated standard uncertainty provided by GUF2 are correct,
coverage intervals are not.

16.3.2.5 It is also seen in figure 16.1 that the PDF provided by MCM is consistent with
the analytic solution.

16.3.2.6 The estimates δy determined as the expectation of δY obtained analytically (A),
using GUF1 (G1), GUF2 (G2) and MCM (M) are given in columns 2 to 5 of the row corre-
sponding to x1 = 0.000 in table 16.1. Columns 6 to 9 contain the corresponding u(δy).

16.3.2.7 Use of GUF1 with model (16.4) is not possible, as explained in subclause 16.3.2.1.
Both GUF2 and MCM correctly provide estimate and associated standard uncertainty in
agreement with the analytic solution.

16.3.2.8 Figure 16.1 also shows the shortest 95 % coverage intervals for the correspond-
ing approximations to the distribution function for δY . The 95 % coverage interval, in-
dicated by dotted vertical lines, as provided by GUF2 is infeasible: it erroneously implies
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Table 16.1: Comparison loss results for input estimates with associated zero correlation
coefficient obtained analytically (A), using GUF1 (G1), GUF2 (G2) and MCM (M) (sub-
clause 16.3.2.6)

Estimate Standard unc. Shortest 95 % coverage interval for
x1 δy/10−6 u(δy)/10−6 δY /10−6

A G1 G2 M A G1 G2 M A G1 G2 M

0.000 50 0 50 50 50 0 50 50 [0, 150] [0, 0] [–48, 148] [0, 150]
0.010 150 100 150 150 112 100 112 112 — [–96, 296] [–70, 370] [0, 367]
0.050 2550 2500 2550 2551 502 500 502 502 — [1520, 3480] [1566, 3534] [1590, 3543]

there is a non-zero probability that δY is negative. However, it provides a reasonably accu-
rate upper endpoint. The continuous vertical lines are the endpoints of the shortest 95 %
coverage interval derived from the analytic solution, as described in 16.5.3. The end-
points of the shortest 95 % coverage interval determined using MCM are indistinguishable
to graphical accuracy from those for the analytic solution.

16.3.2.9 The endpoints of the shortest coverage intervals for x1 = 0.000 in table 16.1
are given in columns 10 to 13 of that table.

16.3.3 Input estimate x1 = 0.010

16.3.3.1 For the input estimate x1 = 0.010, with correlation coefficient r = 0, figure 16.2
shows the results obtained using GUF1 (higher-peaked curve), GUF2 (lower-peaked curve)
and MCM (histogram).

Figure 16.2: As figure 16.1 except that x1 = 0.010, and the results from GUF1 (higher-
peaked curve) and GUF2 (lower-peaked curve) (16.3.3.1, 16.3.3.3, 16.3.4.1, 16.4.3)

16.3.3.2 The PDF provided by MCM exhibits a modest left-hand flank, although it is
truncated at zero, the smallest feasible value of δY . Further, compared with the results
for x1 = 0, it is closer in form to a normal PDF. This outcome is due to the fact that first-
order terms in the Taylor expansion are no longer identically zero as for x1 = 0, so that the
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CLT approximation starts becoming acceptable. The expectations for δY provided by GUF1
and GUF2 are 100 × 10−6 and 150 × 10−6, and the standard uncertainties 100 × 10−6

and 112 × 10−6, respectively. This closeness of the standard uncertainties indicates that
contributions from second-order terms are smaller than those from first order.

16.3.3.3 Figure 16.2 also shows the endpoints of the shortest 95 % coverage intervals
obtained by the three approaches. The continuous vertical lines denote the endpoints of
the interval provided by MCM, the broken vertical lines those resulting from GUF1 and
the dotted vertical lines from GUF2. The interval provided by GUF1 is shifted to the left
compared with that from GUF2 and with the shortest 95 % coverage interval for MCM. Both
intervals provided by GUF again include infeasible values of δY . Again, GUF2 provides
an accurate upper limit, graphically indistinguishable from that provided by MCM. The
interval provided by MCM has its left-hand endpoint at zero, the smallest feasible value.

16.3.3.4 The corresponding results are given in the penultimate row of table 16.1.

16.3.4 Input estimate x1 = 0.050

16.3.4.1 Figure 16.3 is similar to figure 16.2, but for x1 = 0.050. Now, the PDF provided
by MCM is much closer to a normal PDF, a clear indication that the CLT applies in this case.
The reasons are that the first-order term in the Taylor expansion is dominant and the input
quantities are assigned normal distributions. For the same reasons, the PDFs assumed with
both variants of GUF are virtually indistinguishable from each other, – apart from a slight
difference in the expectations – and from the PDF provided by MCM. The latter exhibits a
slight skewness, as evidenced in the tail regions. The coverage intervals provided by the
two variants of GUF are now feasible, that provided by GUF2 being slightly closer to the
MCM solution, as expected.

Figure 16.3: As figure 16.2 except that x1 = 0.050 (16.3.4.1, 16.4.3)

16.3.4.2 The corresponding results are given in the final row of table 16.1.
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16.3.5 Discussion

As x1 becomes increasingly removed from zero, the results given by GUF, with first-order
and with higher-order terms, and those for MCM become closer to each other.

The numerical values x1 = x2 = 0 lie in the centre of the region of interest to the prac-
titioner, corresponding to the so-called “matched” condition for the power meter being
calibrated, and thus in no sense constitute an extreme case.

Because of the symmetry of the model in X1 and X2, exactly the same effect would occur
were x2 used in place of x1.

One reason why GUF1 might be used in practice is that software for its implementation is
readily available: results obtained from it might sometimes be accepted without question.
For the case where x1 = x2 = 0 (figure 16.1), the danger would be apparent because the
standard uncertainty u(δy)was computed as zero, and consequently any coverage interval
for δY would be of zero length for any coverage probability. For x1 ̸= 0 (or x2 ̸= 0), u(δy)
and the length of the coverage interval for δY are both non-zero, so no such warning would
be available without prior knowledge of likely values for u(δy) and this length. Thus, a
danger in implementing software based on GUF for these calculations is that checks of
the software for x1 or x2 sufficiently far from zero would not indicate such problems,
although, when used subsequently in practice for small values of x1 or x2, the results
would be invalid, but conceivably unwittingly accepted.

16.4 Propagation and summarizing: r ̸= 0

16.4.1 General

16.4.1.1 The three approaches used in the cases where the X i are uncorrelated (see 16.3)
are now applied for the three cases in which they are correlated, using, as an example,
r = 0.9. GUF1 only is used. Unlike the cases where the X i are uncorrelated, GUF2 is
not applied, no counterpart being provided in JCGM 100:2008 for the formula containing
higher-order terms when the x i have associated non-zero correlation coefficient [12, clause
5.8]. Other aspects match those in 16.3.

NOTE Calculations with higher-order terms are possible even in the case of correlated x i [72].

16.4.1.2 For GUF1, u(δy) is evaluated as described in 16.5.5. Expression (16.17) in that
subclause gives, for x2 = 0,

u2(δy) = 4x2
1u2(x1).

Consequently, u(δy) does not depend on r and GUF with first-order terms gives identical
results to those presented in 16.3. In particular, for the case x1 = 0, u(δy) is (incorrectly)
computed as zero, as in 16.3.2.1.

16.4.1.3 MCM was implemented by sampling randomly from X characterized by a bi-
variate normal PDF with the given expectation and covariance matrix (expressions (16.3)).
The procedure in [12, Annex C.5] was used.

NOTE Apart from the requirement to draw from a multivariate distribution, the implementa-
tion of MCM for input quantities that are correlated is no more complicated than when the input
quantities are uncorrelated.
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16.4.2 Input estimates x1 = 0, 0.010 and 0.050

16.4.2.1 Table 16.2 contains the results obtained. Those from MCM indicate that al-
though δy is unaffected by the correlation between the X i , u(δy) is so influenced, more
so for small x1, compared with the equivalent values in Table 16.1. The 95 % coverage
intervals are influenced accordingly.

Table 16.2: Comparison loss results for input estimates with associated non-zero correla-
tion coefficient (r = 0.9) obtained analytically (A), and using GUF1 (G1) and MCM (M)
(16.4.2.1)

Estimate Std. uncertainty Shortest 95 % coverage interval for
x1 δy/10−6 u(δy)/10−6 δY /10−6

A G1 M A G1 M A G1 M

0.000 50 0 50 67 0 67 — [0, 0] [0, 185]
0.010 150 100 150 121 100 121 — [−96, 296] [13, 398]
0.050 2550 2500 2551 505 500 504 — [1520, 3480] [1628, 3555]

16.4.2.2 Figures 16.4 and 16.5 show the results provided by GUF1 (bell-shaped curves)
and MCM (scaled frequency distributions) in the cases x1 = 0.010 and x1 = 0.050, respec-
tively. The endpoints of the shortest 95 % coverage interval provided by the two approaches
are also shown, as dotted vertical lines for GUF and continuous vertical lines for MCM.

NOTE Strictly, the conditions under which δY can be characterized by a normal PDF do not
hold following an application of GUF in this circumstance (see [12, clause 5.8] and [6, Annex
G.6.6]). However, this PDF and the endpoints of the corresponding 95 % coverage interval are
shown because such a characterization is commonly used.

Figure 16.4: Results for the model of comparison loss in the case x1 = 0.010, x2 = 0,
with u(x1) = u(x2) = 0.005 and r = 0.9 (16.4.2.2, 16.4.3)

16.4.3 Discussion

In the case x1 = 0.010 (figure 16.4), the effect of the non-zero correlation coefficient has
been to change noticeably the results returned by MCM (compare with figure 16.2). Not
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Figure 16.5: As figure 16.4 except that x1 = 0.050 (16.4.2.2,16.4.3)

only has the shape of (the approximation to) the PDF changed, but the corresponding
coverage interval no longer has its left-hand endpoint at zero. In the case x1 = 0.050
(figure 16.5), the differences between the results for the cases where the input quantities
are uncorrelated and correlated (compare with figure 16.3) are less obvious.

16.5 Analytic calculations

16.5.1 General

This clause provides some analytic results, partly based on the considerations in [30].
Subclause 16.5.2 provides expectation and standard deviation of δY (16.3.1.2). Sub-
clause 16.5.3 provides the PDF for δY when x1 = x2 = r(x1, x2) = 0 (16.3.1.2). Sub-
clause 16.5.4 applies GUF for uncorrelated input quantities (16.3.1.3) and correlated input
quantities (16.4.1.1).

16.5.2 Expectation and standard deviation

16.5.2.1 The variance of a random variable X can be expressed in terms of expectations
as [97, page 124]

V (X ) = E(X 2)− [E(X )]2.

Thus,

E(X 2) = [E(X )]2 + V (X ) = x2 + u2(x),

where x is the estimate of X and u(x) the associated standard uncertainty.

For model (16.4), i.e. δY = X 2
1 + X 2

2 ,

δy = E(δY ) = x2
1 + x2

2 + u2(x1) + u2(x2).

This result applies

1. regardless of the PDFs assigned to X1 and X2, and
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2. whether X1 and X2 are independent or not.

The standard uncertainty associated with δy can be obtained from

u2(δy) = u2(x2
1) + u2(x2

2) + 2u(x2
1 , x2

2),

where, for i = 1 and i = 2, u2(x2
i ) = V (X 2

i ), and u(x2
1 , x2

2) = Cov(X 2
1 , X 2

2). Then, applying
Price’s Theorem for normal distributions [86, 92],

u2(δy) = 4u2(x1)x
2
1+4u2(x2)x

2
2+2u4(x1)+2u4(x2)+4u2(x1, x2)+8u(x1, x2)x1 x2. (16.9)

When x2 = 0 and u(x2) = u(x1), and replacing u(x1, x2) by r(x1, x2)u2(x1),

u(δy) = 2
�

x2
1 + [1+ r2(x1, x2)]u

2(x1)
	1/2

u(x1).

16.5.2.2 When X1 and X2 are uncorrelated, that is, u(x1, x2) = 0, expression (16.9)
becomes

u2(δy) = 4u2(x1)x
2
1 + 4u2(x2)x

2
2 + 2u4(x1) + 2u4(x2). (16.10)

Expression (16.10) can be verified by applying formula (10) in [6, clause 5.1.2] and the
immediately following note.

16.5.3 Analytic solution for zero estimate of the voltage reflection coefficient having
associated zero covariance

16.5.3.1 For the case x1 = x2 = r(x1, x2) = 0 and u(x1) = u(x2), the PDF gY (η) for Y
can be obtained analytically. It is valuable to have such a solution for further validation
purposes. In the above circumstances,

δY = u2(x1)

�

X 2
1

u2(x1)
+

X 2
2

u2(x2)

�

.

16.5.3.2 The term in square brackets is the sum, Z , say, of the squares of two indepen-
dent quantities, each of which is distributed as a standard normal PDF. Thus, the sum is
distributed as chi-squared with two degrees of freedom [97, page 177], so that

δY = u2(x1)Z ,

where Z has PDF

gZ(ζ) = χ
2
2 (ζ) = e−ζ/2/2.

16.5.3.3 The application of a general formula [97, pages 57–61] for the PDF gY (η) of a
differentiable and strictly decreasing function of a variable (here Z) with a specified PDF
yields

gY (η) =
1

u2(x1)
χ2

2

�

η

u2(x1)

�

=
1

2u2(x1)
exp
�

−
η

2u2(x1)

�

, η≥ 0.
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16.5.3.4 The expectation of δY is

δy = E(δY ) =

∫ ∞

0

ηgY (η)dη= 2u2(x1)

and the variance

u2(δy) = V (δY ) =

∫ ∞

0

(η− δy)2 gY (η)dη= 4u4(x1),

that is, the standard deviation is 2u2(x1), results that are consistent with those in 16.5.2.

16.5.3.5 By integration, the corresponding distribution function is

GY (η) = 1− exp
�

−
η

2u2(x1)

�

, η≥ 0. (16.11)

16.5.3.6 Let δyα be that η in expression (16.11) corresponding to GY (η) = α for any α
satisfying 0≤ α≤ 1− p. Then

δyα = −2u2(x1) ln(1−α)

and a 100p % coverage interval for δY [12, clause 7.7] is

[δyα, δyp+α]≡ −2u2(x1)[ln(1−α), ln(1− p−α)] (16.12)

with length

H(α) = −2u2(x1) ln
�

1−
p

1−α

�

.

16.5.3.7 The shortest 100p % coverage interval is given by determining α to minimize
H(α) [12, clause 5.3.4]). Since H(α) is a strictly increasing function of α for 0≤ α≤ 1− p,
H(α) is minimized when α= 0. Thus, the shortest 100p % coverage interval for δY is

[0, − 2u2(x1) ln(1− p)].

For u(x1) = 0.005, the shortest 95 % coverage interval is

[0, 0.000 149 8].

16.5.3.8 The 95 % probabilistically symmetric coverage interval for δY is given by set-
ting α= (1− p)/2 [12, clause 5.3.3]:

−2u2(x1)[ln0.975, ln 0.025] = [0.000 001 3, 0.000 184 4],

which is 20 % longer than the shortest 95 % coverage interval.

NOTE The above analysis is indicative of an approach that can be applied to some problems of
this type. In this case, the results could have been obtained more directly since gY (η) is strictly
increasing and unimodal, and so the shortest coverage interval is in the region of highest density.
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16.5.4 GUF — Uncorrelated input quantities

16.5.4.1 In model 16.4, X1 and X2 are assigned normal PDFs having expectations x1
and x2 and variances u2(x1) and u2(x2), respectively. The corresponding estimate of δY
is thus

δy = x2
1 + x2

2 . (16.13)

The only non-trivially non-zero partial derivatives of the model are, for i = 1,2,

∂ f
∂ X i

= 2X i ,
∂ 2 f

∂ X 2
i

= 2.

16.5.4.2 Hence the application of [6, clause 5.1.2] gives, for the standard uncertainty
u(δy),

u2(δy) =

�

�

∂ f
∂ X1

�2

u2(x1) +
�

∂ f
∂ X2

�2

u2(x2)

��

�

�

�

X=x
= 4x2

1u2(x1)+4x2
2u2(x2), (16.14)

based on a first-order Taylor series approximation of f (X). If the non-linearity of f is
significant [6, 5.1.2 note], the terms

1
2

�

∂ 2 f

∂ X 2
1

�

u2(x1) +
1
2

�

∂ 2 f

∂ X 2
2

�

u2(x2)

and

1
2

�

∂ 2 f

∂ X 2
1

�2

u4(x1) +
1
2

�

∂ 2 f

∂ X 2
2

�2

u4(x2)

need to be appended to formulæ (16.13) and (16.14), respectively. These formulæ thus
become

δy = E(δY ) = x2
1 + x2

2 + u2(x1) + u2(x2) (16.15)

and

u2(δy) = 4x2
1u2(x1) + 4x2

2u2(x2) + 2u4(x1) + 2u4(x2). (16.16)

16.5.4.3 A 95 % coverage interval for δY is given by

δy ± 2u(δy),

as a consequence of δY having a normal PDF.

16.5.5 GUF — Correlated input quantities

16.5.5.1 When the input quantities are correlated, the covariance matrix associated with
the estimates of the input quantities is given in formulæ (16.3).

16.5.5.2 The application of JCGM 100:2008 clause 5.2.2 gives

u2(δy) =

�

�

∂ f
∂ X1

�2

u2(x1) +
�

∂ f
∂ X2

�2

u2(x2) + 2
∂ f
∂ X1

∂ f
∂ X2

r(x1, x2)u(x1)u(x2)

��

�

�

�

X=x

= 4x2
1u2(x1) + 4x2

2u2(x2) + 8r(x1, x2)x1 x2u(x1)u(x2). (16.17)
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16.6 Conclusion

This example shows that in microwave power meter calibration the JCGM 100:2008 un-
certainty framework (GUF), either with (GUF2) or without (GUF1) the inclusion of higher-
order terms, can yield unrealistic estimates, standard uncertainties and coverage intervals,
as demonstrated by the results presented in the figures and tables in this example. It is
therefore recommended that, for situations such as these, a Monte Carlo method [12] is
used to evaluate a coverage interval.
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A Overview of the parts of the GUM

Table A.1: Overview of the parts (published and planned) of the Guide to the expression
of uncertainty in measurement

GUM part Old reference Title

JCGM GUM-1 JCGM 104a Guide to the expression of uncertainty in measurement —
Part 1: Introduction

JCGM GUM-2b Guide to the expression of uncertainty in measurement —
Part 2: Concepts

JCGM GUM-3c JCGM 100 Guide to the expression of uncertainty in measurement —
Part 3: GUM:1995 with minor corrections

JCGM GUM-4d JCGM 106 Guide to the expression of uncertainty in measurement —
Part 4: The role of measurement uncertainty in confor-
mity assessment

JCGM GUM-5b JCGM 110h Guide to the expression of uncertainty in measurement —
Part 5: Examples

JCGM GUM-6e JCGM 103h Guide to the expression of uncertainty in measurement —
Part 6: Developing and using measurement models

JCGM GUM-7f JCGM 101 Guide to the expression of uncertainty in measurement —
Part 7: Propagation of distributions using a Monte Carlo
method

JCGM GUM-8g JCGM 102 Guide to the expression of uncertainty in measurement —
Part 8: Extension to any number of output quantities

JCGM GUM-9b Guide to the expression of uncertainty in measurement —
Part 9: Statistical models and data analysis for interlabo-
ratory studies

JCGM GUM-10b Guide to the expression of uncertainty in measurement —
Part 10: Applications of the least squares method

JCGM GUM-11b Guide to the expression of uncertainty in measurement —
Part 11: Bayesian methods

JCGM GUM-12b Guide to the expression of uncertainty in measurement —
Part 12: Basic methods for uncertainty propagation

a Replaced by
JCGM GUM-1:2023 [9]

b Planned
c Available as JCGM 100:2008 [6]
d Available as JCGM 106:2012 [8]

e Available as JCGM GUM-6:2020 [10]
f Available as JCGM 101:2008 [12]
g Available as JCGM 102:2011 [7]
h Reference of the circulated committee draft
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B Conventions and notation

B.1 A generic quantity is denoted by an upper case letter and a measured value (estimate)
by a lower case letter [12, Clause 4.8].

EXAMPLE Measured values of the measurand Y and of the generic input quantity X i are denoted
by y and x i , respectively.

B.2 A specific quantity is denoted by its agreed symbol. The measured value (estimate)
is denoted by the same symbol adorned with a hat [12, Clause 4.8].

EXAMPLE 1 The thermodynamic temperature is denoted by T and a measured value of this tem-
perature by bT , for example bT = 295.4 K.

EXAMPLE 2 The mass of a weight is denoted by m and the measured value by Òm.

NOTE 1 In JCGM 106:2012, a measured value is denoted by a subscript ‘m’.

NOTE 2 ISO/IEC 80000 and the IUPAC Green Book [20] contain information about symbols for
specific physical quantities.

B.3 The state of knowledge about a quantity is described by the probability density func-
tion (PDF) of a random variable denoted by the same symbol used for the quantity [12,
Clause 4.1].

B.4 The state of knowledge about an input quantity X is described by a PDF gX (ξ), where
the subscript X denotes a random variable with possible values ξ [12, Clause 4.3].

B.5 Similarly, the state of knowledge about the measurand Y is described by a PDF gY (η)
and the corresponding probability distribution by GY (η). Y denotes a random variable
with possible values η [12, Clause 4.7].

B.6 A PDF for more than one input quantity is often called joint even if all input quantities
are mutually independent.

B.7 The PDF provided by the JCGM 100:2008 uncertainty framework (GUF) is either
a normal distribution with mean y and standard deviation u(y) or a shifted and scaled
Student t-distribution with mean y , scale u(y) and effective degrees of freedom ν.

B.8 The law of propagation of uncertainty (LPU) applies to the use of a first-order Taylor
series approximation to the model. The term is qualified accordingly when a higher-order
approximation is used [12, Clause 4.9].

B.9 The notation u(y) is to be read as the standard uncertainty associated with y . It
represents the standard uncertainty about the true value of Y .

B.10 Noting that a covariance matrix V is symmetric, only the upper triangular part is
shown. The same applies for the correlation matrix R.
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B.11 The terms “coverage interval” and “coverage probability” are used throughout this
document. JCGM 100:2008 uses the term “level of confidence” as a synonym for coverage
probability, drawing a distinction between “level of confidence” and “confidence level” [6,
6.2.2], because the latter has a specific definition in statistics. Since, in some languages,
the translation from English of these two terms yields the same expression, the use of these
terms is avoided here [12, Clause 4.11].

B.12 The subscript “c” [6, Clause 5.1.1] in uc(y) for the combined standard uncertainty
is deemed redundant and not used. Thus, the standard uncertainty associated with y is de-
noted generally as u(y). Likewise, the qualifier “combined” is also regarded as superfluous
[12, Clause 4.10].

B.13 Unless otherwise qualified, values are expressed in a manner that indicates the
number of meaningful significant decimal digits [12, Clause 4.13].

B.14 Some symbols have more than one meaning in this document. See Annex C. The
context clarifies the usage.

B.15 According to Resolution 10 of the 22nd CGPM (2003) “. . . the symbol for the deci-
mal marker shall be either the point on the line or the comma on the line . . . ”. The Joint
Committee for Guides in Metrology (JCGM) has decided to adopt, in its documents in
English, the point on the line as decimal marker [12, Clause 4.12].
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C Glossary of symbols

C.1 Generic variables and functions

C sensitivity matrix
Cov covariance
E expectation
f measurement model of the form Y = f (X)
f measurement model having multiple output quantities of the form Y = f (X)
h measurement model of the form h(Y, X) = 0
h measurement model having multiple output quantities of the form h(Y , X) = 0
k coverage factor
N number of input quantities
U expanded uncertainty
u standard uncertainty
r coefficient of linear correlation
R correlation matrix
V covariance matrix
V, σ2 variance
X input quantity
X column vector of input quantities X1, . . . , XN
x measured value (estimate) of input quantity X
Y measurand (output quantity of a measurement model)
Y column vector of output quantities Y1, . . . , YN
y measured value (estimate) of measurand Y

C.2 Probability distributions

Cauchy folded scaled Cauchy distribution
CTrap curvilinear trapezoidal distribution
Gamma gamma distribution
LN lognormal distribution
N normal distribution
R rectangular distribution (uniform distribution)
U U-shaped distribution (arc sine distribution)
t Student t-distribution
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