#### The Current Status of the Accelerator Neutron Source and Dosimetry for Boron Neutron Capture Therapy

#### Hiroki Tanaka Institute for Integrated Radiation and Nuclear Science, Kyoto University (KURNS)

23th January 2025 CCRI Webinar

#### Boron Neutron Capture Therapy



#### Expectations

- Indications for recurrent cancer after radiation therapy and invasive cancer
- Indications for radiation-resistant cancer due to high LET particles

1932 : Chadwick

1936 : Dr. Locher BNCT principal

1940-1950: USA basic research accelerator based thermal neutron

1951 : First BNCT in USA Brookhaven reactor

1951-1961: USA 63 clinical studies

1962-1993 : basic research in USA



**BNCT** histories

Finland

Boron-Neutron Capture Therapy for Tumors", edited by H.Hatanaka (1986)

#### Clinical studies at KURNS using research reactor: KUR



# BPA (paraboronophenylalanine)





✓ Taken into the cells through amino acid transport.

✓ Uptake level depends on cell proliferation.

Therefore, it accumulate more in tumor cells than in normal cells.
 Low toxicity.

#### Clinical studies at KURNS using research reactor: KUR



# Heavy Water Neutron Irradiation Facility







#### Clinical studies at KURNS using research reactor: KUR



# **BNCT** by Using Epithermal Neutron Beam



# Multi-leaf collimator





Application for brain tumor without craniotomy,



#### Clinical studies at KURNS using research reactor: KUR



# Reactor-based BNCT facility <sup>12</sup>

# in the world

Brookhaven Medical Research Reactor (BMRR) (1951~1961, 1994~1999) 99

Finnish Research Reactor 1(FiR-1) (1999~2012) 311



Sweden research Reactor(R2-0) (2001~2005) 52

Czech Republic Research Reactor (LVR-15) (2000~) 2 Hitachi Training Reactor(HTR)(1968~1974)13 Massachusetts Institute of Technology nuclear Reactor (MITR)(1959~1961, 1994~2003) 42

High Flux Reactor at Petten (HFR) (1997~) 22

Italy Research Reactor (2002~) 2

Musashi Institute of Technology research Reactor(MuITR)(1977~1989)108

Tsing Hua Open-pool Reactor (THOR)>460 (2010~)

JRR-4 (1999~) 107

Argentine Research reactor2003~) 7





### Plan of accelerator based neutron source

|                                      | Proton Energy                                                        |                           |                               |                 | Accelerator                                     |                         |                   |  |
|--------------------------------------|----------------------------------------------------------------------|---------------------------|-------------------------------|-----------------|-------------------------------------------------|-------------------------|-------------------|--|
|                                      | Ep<3MeV                                                              |                           |                               |                 | Electrostatic ac                                |                         |                   |  |
|                                      | 3MeV <ep<11mev< td=""><td>Linac, Cyclotro</td><td></td></ep<11mev<>  |                           |                               |                 | Linac, Cyclotro                                 |                         |                   |  |
|                                      | 11MeV <ep<100mev< td=""><td>Cyclotron、FFA</td><td></td></ep<100mev<> |                           |                               |                 | Cyclotron、FFA                                   |                         |                   |  |
| Reaction                             |                                                                      | Proton<br>Energy<br>(MeV) | Yield<br>(Neutron/<br>Proton) | Melting<br>(°C) | Conductivity(<br>W/m/K)                         | Neutron<br>Energy       | Moderator<br>Size |  |
| <sup>7</sup> Li(p,n)                 | <sup>7</sup> Be                                                      | 2.5                       | 1.46x10 <sup>-4</sup>         | 180             | 84.7                                            | 0.1~0.5MeV              | Small             |  |
| <sup>9</sup> Be(p, n) <sup>9</sup> B |                                                                      | 4                         | 1.6x10 <sup>-4</sup>          | 1278            | 201                                             |                         | Large             |  |
| <sup>9</sup> Be(p, n) <sup>9</sup> B |                                                                      | 30                        | 3.0x10 <sup>-2</sup>          | 1278            | 201                                             | Depend on proton energy | Large             |  |
| Ta(p,xn                              | )                                                                    | 50                        | 7.0x10 <sup>-2</sup>          | 3017            | 57.5                                            |                         | Large             |  |
| Beam current                         |                                                                      |                           |                               |                 | Reduction of heat on target                     |                         |                   |  |
| Trade off Size of moderator <==>     |                                                                      |                           |                               | ade of          | Neutron intensity<br>penetrated after moderator |                         |                   |  |



#### Cyclotron Based Epithermal Neutron Source(C-BENS)



Accelerated particle : negative hydrogen ion(-H) Maximum Energy:30MeV Stable beam current: 1mA Maximum power : 30kW Beam tube

Be target thickness is 5.5 mm (proton range :5.8 mm at 30MeV)



Irradiation bed

Beam shaping assembly

Irradiation room

#### Cyclotron Based Epithermal Neutron Source(C-BENS)

Pb : used as a breeder and a reflector for high energy neutrons Fe : used as a moderator

Al and CaF<sub>2</sub> : used as a shaper for epi-thermal region Polyethylene : used as a shielding for high energy neutrons



has the resonance at several hundred keV.

#### Cyclotron Based Epithermal Neutron Source(C-BENS) Southern Tohoku BNCT Research Center

Applied Radiation a

ð.

#### Applied Radiation and Isotopes 156 (2020) 108961



Contents lists available at ScienceDirect

Applied Radiation and Isotopes

journal homepage: http://www.elsevier.com/locate/apradiso

Design and construction of an accelerator-based boron neutron capture therapy (AB-BNCT) facility with multiple treatment rooms at the Southern Tohoku BNCT Research Center

Takahiro Kato<sup>a,\*</sup>, Katsumi Hirose<sup>a</sup>, Hiroki Tanaka<sup>b</sup>, Toshinori Mitsumoto<sup>c</sup>, Tomoaki Motoyanagi<sup>a</sup>, Kazuhiro Arai<sup>a</sup>, Takaomi Harada<sup>a</sup>, Akihiko Takeuchi<sup>a</sup>, Ryohei Kato<sup>a</sup>, Satoru Yajima<sup>c</sup>, Yoshihiro Takai<sup>a</sup>

<sup>a</sup> Gouthern Tohoku BNCT Research Center, Fukushima, 963-8052, Japan <sup>b</sup> Institute for Integrated Radiation and Nuclear Science, Kyoto University, Osaka, 590-0494, Japan <sup>c</sup> Sumitomo Heavy Industrise, Lad., Tokyo, 141-6025, Japan





#### Fig. 1. Schematic layout of the basement floor of the Southern Tohoku BNCT Research Center.

#### http://southerntohoku-bnct.com/

#### Cyclotron Based Epithermal Neutron Source(C-BENS) Kansai BNCT Medical Center







https://www.ompu.ac.jp/kbmc/index.html

Cyclotron Based Epithermal Neutron Source(C-BENS) BNCT Treatment system, Treatment planning system, Boron drug The approvals of medical device and drug



Southern Tohoku BNCT Research Center Kansai BNCT Medical Center

"unresectable locally advanced or locally recurrent head and neck cancer"





# AB-BNCT projects in the world

| Name of the project   | Location                                                                                                      | Accelerator                                                                                           | Purpose          | Current status          |  |
|-----------------------|---------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|------------------|-------------------------|--|
| C-BENS                | Particle Radiation<br>Oncology Research<br>Center of Kyoto<br>University in Kumatori,<br>Japan                | Cyclotron BNCT<br>research                                                                            |                  | complete clinical trial |  |
| NeuCure (BNCT30)      | Southern Tohoku BNCT<br>Research Center,<br>Fukushima, Japan                                                  | Cyclotron Clinical<br>BNCT                                                                            |                  | patient treatment       |  |
| NeuCure (BNCT30)      | Kansai BNCT Medical<br>Center, Osaka Medical<br>College, <u>Os</u> aka, Jap <u>an</u>                         | Cyclotron Clinical<br>BNCT                                                                            |                  | patient treatment       |  |
| NeuCure (BNCT30)      | Boao BNCT Center,<br>Boao, China                                                                              | Cyclotron                                                                                             | Clinical<br>BNCT | under construction      |  |
| Heron AB-BNCT         | China Medical University<br>Hsinchu Hospital, Zhubei<br>City, Hsinchu County,<br>Taiwan                       | Cyclotron                                                                                             | Clinical<br>BNCT | clinical trial          |  |
| Heron AB-BNCT         | Taipei Veterans General<br>Hospital, Taipei, Taiwan                                                           | Cyclotron                                                                                             | Clinical<br>BNCT | under development       |  |
| CYCIAE-14B            | China Institute of Atomic<br>Energy (CIAE), Beijing,<br>China<br>Tai'an Central Hospital,<br>Tai'an, China    | nstitute of Atomic<br>/ (CIAE), Beijing,<br>China Cyclotron BNCT<br>Central Hospital,<br>ai'an, China |                  | commissioning           |  |
| iBNCT                 | Ibaraki Neutron Medical<br>Reserch Center,<br>University of Tsukuba,<br>Japan                                 | RFQ+DTL                                                                                               | Clinical<br>BNCT | clinical trial          |  |
| A-BNCT                | Gachon University Gil<br>Medical Center, Songdo,<br>Incheon, South Korea                                      | RFQ+DTL                                                                                               | Clinical<br>BNCT | clinical trial          |  |
| Legnaro-RFQ           | Legnaro National<br>Laboratory, Italian<br>Institute of Nuclear<br>Physics (INFN), Legnaro<br>(Padova), Italy | RFQ                                                                                                   | BNCT<br>research | under development       |  |
| Beryllium 10 projects |                                                                                                               |                                                                                                       |                  |                         |  |

|                        |                                                                                                                 | AULL                    | L)                            |                        |  |
|------------------------|-----------------------------------------------------------------------------------------------------------------|-------------------------|-------------------------------|------------------------|--|
| Name of the project    | Location                                                                                                        | Accelerator             | Purnose                       | Current status         |  |
| NCC CICS-1             | National Cancer Center<br>Hospital, Tokyo, Japan                                                                | RFQ                     | Clinical<br>BNCT              | phase I clinical trial |  |
| CICS-2                 | Edogawa Hospital, Japan                                                                                         | RFQ                     | Clinical<br>BNCT              | clinical trial         |  |
| LU AB-BNCT             | Fu <b>jian Medis</b> al University<br>Union Hospital (Mazu<br>Hospital), Putian City,<br>Fujian Province, China | RFQ                     | Clinical<br>BNCT              | commissioning          |  |
| D-BNCT01               | Dongguan Neutron<br>Science Center,<br>Dongguan campus of<br>IHEP, China                                        | RFQ                     | BNCT<br>research              | experimental use       |  |
| D-BNCT02               | Dongguan People's<br>Hospital, China                                                                            | RFQ                     | Clinical<br>BNCT              | under construction     |  |
| X-TANS                 | Xi'an Jiaotong University,<br>Xi'an, China                                                                      | RFQ                     | Multi-<br>purpose<br>research | under development      |  |
| SARAF-LILIT            | Soreq Nuclear Research<br>Center, Israel                                                                        | RFQ+HWR                 | Multi-<br>purpose<br>research | experimental use       |  |
| nuBeam                 | Helsinki University<br>Hospital, Finland                                                                        | Electrostatic           | Clinical<br>BNCT              | commissioning          |  |
| nuBeam                 | Shonan Kamakura<br>General Hospital in<br>Kanagawa Prefecture,<br>Japan                                         | Electrostatic           | Clinical<br>BNCT              | commissioning          |  |
| HF ADNF                | Birmingham University,<br>UK                                                                                    | Electrostatic           | Multi-<br>purpose<br>research | commissioning          |  |
| NeMeSis                | Granada University<br>Hospital, Spain                                                                           | Electrostatic           | Clinical<br>BNCT              | under development      |  |
| NUANS (Dynamitron)     | Nagoya University, Japan                                                                                        | Electrostatic           | BNCT<br>research              | experimental use       |  |
| KIRAMS AB-BNCT         | Korea Institute of<br>Radiological and Medical<br>Sciences (KIRAMS),<br><u>Se</u> oul, South Korea              | Electrostatic           | BNCT<br>research              | under construction     |  |
| NeuPex                 | Xiamen Humanity<br>Hospital, Xiamen City,<br>China                                                              | Electrostatic<br>Tandem | Clinical<br>BNCT              | clinical trial         |  |
| Alphabeam              | Fondazione Centro<br>Nazionale Adroterapia<br>Oncologica (CNAO),<br>Pavia, Italy                                | Electrostatic<br>Tandem | Clinical<br>BNCT              | under construction     |  |
| VITA                   | Budker Institute of<br>Nuclear Physics,<br>Novosibirsk, Russia                                                  | Electrostatic<br>Tandem | BNCT<br>research              | experimental use       |  |
| νπΑ<br>t-projects-2021 | Blokhin National Medical<br>Research Center of<br>Oncology, Moscow,<br>Russia                                   | Electrostatic<br>Tandem | Clinical<br>BNCT              | under construction     |  |

https://isnct.net/bnct-boron-neutron-capture-therapy/accelerator-based-bnct-projects-2021



# **Dose evaluation of BNC**

The main doses produced by neutron irradiation in BNCT are,

- (1) Boron dose :  ${}^{10}B(n,\alpha)^{7}Li$ 
  - Depends on boron concentration, reaction with thermal neutrons
- (2) Gamma dose:

from accelerator neutron source from (n,γ) reaction between thermal neutron and hydrogen in human body (3)Nitrogen dose:<sup>14</sup>N(n,p)<sup>14</sup>C

(4)Hydrogen dose:<sup>1</sup>H(n,n)p

In BNCT dosimetry, the total dose from (1) to (4) must be determined for each tumor and tissue.

The difference in boron doses can be used as a dose advantage for tumors over normal tissues.



# nysical

25

5

4.5

4

3

2.5

2

1.5

\_\_\_\_1 10<sup>2</sup>

3.5

RBE

kinetic energy released in materials:Gy KERMA × Neutron energy spectrum



Compound Biological Effectiveness : CBE

| Compound     | Tumor                               | Skin | Brain | Mucosa | Liver | Lung |
|--------------|-------------------------------------|------|-------|--------|-------|------|
| BSH CBE      | 2.5                                 | 0.8  | 0.37  | 0.3    | ?     |      |
| BPA CBE      | 3.8                                 | 2.5  | 1.35  | 4.9    | ?     | ?    |
| Nitrogen RBE | 3                                   |      |       |        |       |      |
| Hydrogen RBE | 1.8-3.2(Depended on neutron energy) |      |       |        |       |      |



Tumor boron concentration/blood boron concentration = -3.5

Each physical dose is multiplied by its RBE or CBE. The total X-ray equivalent dose is obtained by multiplying each physical dose by

Boron equivalent dose D<sub>B</sub>

- = Boron physical dose x CBENitrogen equivalent dose  $D_N$
- = Nitrogen physical dose  $\times$  <u>Nitrogen RBE</u> Hydrogen equivalent dose D<sub>H</sub>

= hydrogen physical dose  $\times$  Hydrogen RBE Total equivalent dose

 $D_{Total} (Gy-Eq) = D_B + D_N + D_H + D_{\gamma}$ 

#### **BNCT dosimetry**



FIG. 17. Schematic layout of physical dosimetry in an AB-BNCT system showing (a) in-air, (b) in-phantom and (c) whole body measurements (courtesy of H. Tanaka, Kyoto University).



measure in whole energy range.



## Water phantom



3(

# Beam monitor



#### Proton electric current

Proton electric current was measured by a transmission type current monitor. It is needed to confirm the linearity between proton current and neutron flux at beam port using activation foil.

Proton electric charge is act as Monitor Unit like a conventional radiotherapy after the confirmation of the linearity and target stability. Real-time neutron monitor is desirable to determine the prescribed dose to patient.



# Real time neutron detector

- Disturbance by detector size Small LiCAF scintillator ~0.4mm
- High neutron intensity10<sup>9</sup>(cm<sup>-2</sup>s<sup>-1</sup>)
   Small scintillator
- Discrimination of gamma ray Small scintillator, Pulse height distribution





#### **Calibration**

- Calibration field: thermal neutron standard at Institute of Japan (NMIJ)
- Source: high emission rate AmBe
- Moderator: graphite bricks
- Source-detector distance: 90 cm
- Thermal flux: ~10<sup>3</sup> n/cm<sup>2</sup>/s

Neuron energy spectrum is practically a Maxwellian distribution



https://unit.aist.go.jp/rima/ract-neu/neutron/souti.html#souti-3







Gold wire was set at surface, 20 mm, 60 mm position to confirm the output of neutron information and irradiated with same amount of electric charge of proton beam. Surface position can be checked the fast neutron dose in Annual QA.

Gamma ray dose distribution is similar to thermal neutron flux distribution. The measurement of gamma ray dose is useful to check not only gamma dose but thermal neutron flux.

The repeat measurement of the thermal neutron flux and gamma ray dose distribution was conducted in the commissioning phase.

Source description of neutron and gamma ray was set in treatment planning system. The simulation was performed and compared with the measured distribution of thermal neutron flux and gamma ray dose.



 Neutron energy spectrum at target
 Image: Spectrum at target
 Time of Flight

 Neutron energy spectrum at beam port
 Multi-foil, bonner sphere

 Neutron/gamma ray dose in lateral direction
 Activation method, TLD/Glass dosimeter

• Whole body exposure Neutron/gamma ray dose at each organ

• Water phantom Thermal neutron flux distribution (Fast) Neutron dose/flux distribution Gamma ray dose rate distribution

In air

On-lineBeam monitor
 Electric current of proton beam
 Real-time neutron monitor

QA/QC, Commissioning

Human simulated phantom, Activation method

Activation method, TLD/Glass dosimeter
 Twin ionization chamber

Electric current monitor Fission chamber, BF3,LiCAF + fiber Calibration Activation method, TLD/Glass dosimeter Bonner sphere

Please join us to develop BNCT dosimetry!

