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Motivation & Introduction 

Implementing a system for realizing the volt using the Josephson effect, as the International System of Units (SI) 

recommends, requires expensive equipment to obtain and maintain. This implies that any research that may be done 

on the devices that make this unit through simulation techniques will result in both economic benefits and 

improvement in understanding the physical and technical processes that occur in these systems. Additionally, 

optimizing the physical system's configuration parameters will reduce the setup and measurement times and improve 

the transference of the SI voltage unit to secondary standards. This will also help to comply with the signed CIPM MRA 

and the CMCs published in the KCBD. 

This initiative is supported by Argentina’s National Metrology Institute, Instituto Nacional de Tecnología Industrial 

(INTI), and Universidad Nacional de San Martín (UNSAM), which are collaborating on my PhD thesis titled “Digital 

Twins Applied to Quantum Metrology.” The main objective is to apply digital twin (DT) techniques to the 

programmable Josephson effect.   

With the incorporation of real-time data obtained through instruments and the utilization of Artificial Intelligence (AI) 

and Machine Learning (ML), a complete representation of that device can be produced, which allows for predicting 

its behavior, making optimizations without exhaustive measurements, and in some scenarios, anticipating possible 

failures.  

DTs are key technologies that enable the achievement of strategic policies devoted to sustainability and digitalization 

within the complex framework of Industry 4.0 and the European Green Deal.  That is why EURAMET is funding the 

22DIT01 ViDiT project [1], to develop methods and tools to ensure DTs' reliability and trustworthiness in metrology. 

This will enable the traceability of modern measurement systems and boost and strengthen the European lead in this 

field. To facilitate the uptake of the developed methods, by NMIs/DIs and industrial stakeholders, three good practice 

guides (GPGs) will be written, and the applicability of the techniques will be demonstrated in twelve case studies 

covering the industrial metrology applications. INTI and TÜBİTAK UME are partners in this project, and the PhD thesis 

is one of the case studies.  
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A DT is a virtual simulation model that accurately replicates a physical system and its characteristics. It includes 

dynamic updates of the virtual model according to the observed state of its real counterpart. Thus, it consists of two 

connections: Physical-to-Virtual (P2V) for modeling the system and Virtual-to-Physical (V2P) for implementing control 

strategies to achieve target accuracy in the physical system. Figure 1 shows a representation of this concept. 

 

Figure 1. Representation of UME Quantum Voltage Standard Digital Twin. 

The P2V connection is determined by measurements on the physical system which feeds the data-driven model. This 

model predicts the configuration parameters used as control signals in the V2P connection.  

Furthermore, time‑dependent influences must be considered. Hence, a DT needs to be updated with data from actual 

measurements collected in real-time, and the evaluation of measurement uncertainty needs to be adapted 

accordingly to comply with the JCGM:GUM. Otherwise, non-GUM-compliant uncertainty estimation methods should 

be studied and tested. 

A reliable validation procedure needs to be developed to trust the outcomes of a DT. Analyzing and quantifying 

differences between calibrated standards or data from calibrated instruments and their virtual counterparts is key to 

making a DT fit for use in metrology, e.g. as substitutes or extensions to certified measurement devices.  The model 

will be updated based on data collected during measurements. 

For this work to be carried out, it was necessary to collect a large amount of information on the behavior of the 

Josephson systems of TÜBİTAK UME. This data was used to predict and model the operation of the device using the 

previously mentioned techniques.  

Developing methods for uncertainty evaluation and validation of a DT are essential for this project and is becoming 

one of the priorities in the field of metrology, given the current relevance that DTs have acquired. 
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The proposed objectives of the project are: 

• Familiarize with the Josephson systems of TÜBİTAK UME, particularly with the Programmable Josephson 

Voltage Standard (PJVS), and learn to use a cryocooler.  

• Develop a digital twin of a Quantum Voltage Standard to optimize the physical system configuration 

parameters, reduce the setup and measurement times, and improve the transference of the SI voltage unit, 

the volt, to secondary standards. The case study will be the generation of quantum DC steps.  

• Study of the system’s configuration parameters to optimize.  

• Study and measure the possible signals to be synthesized by the PJVS.  

• Implementation of AI and ML algorithms to train the data-driven model of the DT.  

• Develop a method for the validation of the DT, using statistical procedures to assess differences between 

calibrated standards and the corresponding data from their virtual counterpart.  

• Study different approaches for uncertainty quantification for the DT.  

Completing these objectives will allow the optimization of the measurements and calibrations at INTI and TÜBİTAK 

UME, expanding their measurement capabilities. This work will significantly contribute to developing the PhD thesis 

and the ViDiT project and may lead the way for future collaborations between the laboratories of INTI and UME. It is 

expected to make joint publications that showcase the results, disseminate the findings of this project, and facilitate 

the transferability of the developed methods and procedures for uncertainty evaluation and validation in industrial 

setups. Ensuring direct traceability to the SI DC voltage unit is crucial for the countries involved and the national 

industry. 

Research 

The realization of the volt is possible due to the Josephson effect [2], which allows the generation of a voltage that 

depends only on fundamental constants and a microwave frequency, according to  

𝑉𝐽 = 𝑛𝑓
ℎ

2𝑒
, (1) 

where n is a dimensionless quantum number, f is the microwave frequency in Hz, h is the Planck constant in J s, and e 

is the elementary charge in C. Different types of Josephson systems are in use today, particularly the Programmable 

Josephson Voltage Standard (PJVS) can be used as a superconducting multi-bit digital to analog converter (DAC), 

producing time-stepped waveforms whose accuracy is determined by well-defined steps of constant Josephson 

voltage established by equation 1 [3]. An example is presented in Figure 2. 

 

Figure 2. Theoretical Josephson signal. A sine wave with an amplitude of 2 V peak-to-peak and a frequency of 62.5 Hz is shown in red. The 

theoretical synthesized PJVS counterpart is presented in blue, here 20 steps per period have been used. 
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UME PJVS System Overview 
The work in this project is based on the TÜBİTAK UME PJVS System [4]. The devices that make up the system are 

presented in Figure 3. Due to the nature of superconductor materials, the PJVS array must be cooled down. To do 

that, a cryocooler of the brand TransMIT is used, specifically a two-stage 4 K pulse tube cooler PTD-406C (SN 060) 

with a helium liquefaction unit and chip carrier. This device converts helium from gas to liquid by compressing it. The 

array is mounted in a special thermal interface, supported on a cold hat. The temperature of the first stage is 40 K, 

and the second stage drops the temperature to 2 K. As the liquid helium never contacts the array, this is called a dry 

cooling system. A rotary valve, driven by a frequency converter at 1.2 Hz, compresses the gas automatically. The two 

cooling stages are built with very thin metallic cylinders to reduce the heat conduction to the coldest zone. Due to 

this, the operation of the rotary valve produces a mechanical vibration at the frequency of the frequency converter. 

This translates to a temperature oscillation of ±100 mK in the cold hat. This behavior is intrinsic to system operation 

and can not be eliminated, but it is reduced by adding a 50 ml reservoir of liquefied helium mounted on the second 

stage. By this, temperature oscillation is reduced to ±5 mK. 

 

Figure 3. UME’s PJVS system. A: PC with PJVS software. B: Bias source. C: Temperature controller. D: Rubidium atomic clock. E: Arbitrary 

Waveform Generator. F: Digitizer. G: Microwave synthesizer: H: Resistors box. I: Cryocooler when Josephson array is cooled below 4.2 K. 

J: Turbomolecular pump. 

The array used in the PJVS is a 10 V, based on SNS technology, produced by Supracon AG. It contains 69632 Josephson 

Junctions (JJ) grouped in 18 segments having a nearly binary sequence that can produce a maximum output of 

±10.08 V at 70 GHz operating frequency with a resolution of 145 μV. The array is placed in a magnetic shield and 

mounted on the cryocooler, accommodating all connecting wires and the waveguide. One handy feature of the array 

package is a small heater installed below the chip which is used to heat the array and remove trapped flux during the 

system operation. The heater is controlled by a Lakeshore Model 325 temperature controller. 

The array is biased with a National Instruments PXIe-6738 32-channel board, mounted in a NI 1082DC PXI chassis. Its 

main advantage is complete synchronization of all channels on the board. To provide electrical isolation from ground, 

the bias source is operated by a battery and controlled by a PC via a fiber-optic link. The bias source can produce 

voltages up to 10.2 V. Because of the low output resistance of the bias source (0.2 Ω), 100 Ω foil resistors with very 
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low inductance are connected in series with each segment and placed inside a special thermal box provided with the 

bias card. Only for the largest segment 50 Ω is used to reach a total voltage over 10 V. 

The total resistance of the bias paths is measured and stored in a file used by the control software. The bias source 

has a 1 mV resolution, which with the resistance of the bias connections corresponds to the 10 μA (20 μA for the 

largest segment) current resolution. 

Microwave bias is provided by a compact synthesizer produced by TeraHertz Laboratory, a branch of the TÜBİTAK 

MAM Institute. The synthesizer is directly mounted at the top of the cryoprobe and can produce up to 200 mW of CW 

power at frequencies between 69 and 71 GHz, with a resolution of 4 kHz. It is locked to a rubidium frequency standard 

and controlled by the PC via an isolated RS 232 link. 

System Setup 
Before starting the cooling process, a vacuum must be created in the cryocooler. A two-stage automatic 
turbomolecular vacuum pump is used. After the vacuum container with the installed cold head has been pumped to 
a pressure of less than 10-3 mbar, the cooler is ready for startup. The frequency converter is turned on to start cooling, 
and then the compressor is turned on. The system is prepared to operate when the second stage temperature goes 
below 2.4 K. 
 
The first task is determining the optimum bias currents for all segments of the array and the microwave frequency. 

Optimum frequency and power are found by sweeping the synthesizer from 69 to 71 GHz, while monitoring the width 

of the array's 1st and 0th Shapiro steps. V-I characteristics of all segments are measured and centers of the flat voltage 

regions of the first steps (n = 1) are taken as optimum bias currents. These margins are set in the control software and 

generally need no change during the system operation; however, bias currents are dithered occasionally to ensure 

proper quantization. Other data necessary for system software are the number of JJs in each segment and the 

microwave signal frequency. 

The PJVS system can produce stepwise-approximated AC voltages up to a few kilohertz. The frequency of the AC signal 

and the number of steps per period are controlled by system software. The bias source produces a rise time well 

below 1 μs on the steps of the stepwise signal, which is enough for sampling-based measurements at frequencies up 

to 1 kHz. The bias source and its driver offer various synchronization options with the auxiliary instruments. To isolate 

the bias source, clock & trigger connections are realized through fiber-optic converters. 

Troubleshooting 

• Cryocooler cleaning 
One of the problems to face at the beginning was that the system was not cooling below 220 K. The compressor 
and the temperature controller were checked to verify that work properly. The other possible cause is that some 
impurities were in the helium or clogging the cryocooler’s filter. Cleaning of the helium gas should be performed 
every 5000 hours of operation. The compressor circulates the gas using the rotary valve across the cryocooler. 
Then, the gas is expelled and the turbomolecular pump is used to vacuum the chamber. Once a pressure below 
10-4 mbar is achieved and some time passes, the process is repeated 3 more times. After that, the cryocooler is 
switched on and the temperature is checked in the second stage. This cleaning solved the cooling issues, and the 
system was ready to operate. 

• Flux trapped in array 
A common issue when working with PJVS systems is the flux trapped in one or more segments. If this occurs, the 
voltage is not quantized, and the array must be heated to lose its superconducting state. To do that, the bias 
source and microwave synthesizer should be put on zero, input and output connectors removed, and the 
temperature controller set to heat up to 12 K for at least ten minutes. Then the heater is switched off and the 
second stage of the cryocooler should reach a temperature below 2.4 K before connecting and operating the 
system again.   
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Measuring system 
The experimental measuring setup is shown in Figure 4. The PJVS array is cooled in the cryocooler, and the microwave 
signal is provided by a microwave synthesizer locked to the frequency of a rubidium clock. The signal travels across a 
Teflon waveguide which is isolated. The bias source provides the bias currents through the resistors box, the arbitrary 
waveform generator sends the triggers to the PJVS and the digitizer, and the latter measures the signal. The devices 
are controlled by a PC and all controlling signals are isolated. Synchronization is possible due to the arbitrary waveform 
generator AFG3022C, which sends a trigger to generate the PJVS signal and a burst to the digitizer to take 
measurements in DCV sampling mode.  
 

 
Figure 4. Measuring system. The PC controlling signals, the PJVS trigger, and the microwave signal are isolated to separate the PJVS from the 

power line ground and perform floating measurements. Dotted lines represent fiber optic cables. 

UME’s voltage lab has a NI PXI-5922 high-resolution oscilloscope board mounted in a NI 1082DC PXI chassis. This 
device allows measurements of signals up to 5 V peak amplitude with a sampling rate between 50 kS/s and 15 MS/s. 
These characteristics make it suitable for differential measurements but for absolute measurements of stepwise 
approximated signals lacks range and resolution. That is why Agilent 3458 was selected as the primary digitizer to 
measure the necessary signals to make the data-driven model of the digital twin. The maximum sampling frequency 
used was 50 kHz and is possible to measure signals of 10 V peak amplitude. The disadvantage is that with a lower 
sampling rate is difficult to capture the signal transients. Test measurements were performed with both devices, to 
prove that Agilent 3458 was the best choice for signal digitalization. A comparison of the stability using the overlapping 
Allan deviation [5] was made by measuring 3000000 points of a 1 V DC value with a 50 kHz sampling frequency, and 
the Agilent 3458 needs fewer samples to reach an uncertainty of the order of 10-6 V, as the Figure 5 shows. 
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Figure 5. Comparison of the overlapping Allan deviation for a DC voltage of 1 V. Three million points were measured at a sampling frequency of 

50 kHz. Agilent 3458 needs fewer samples to reach the minimum uncertainty without low-frequency noise. 

Selection of the most relevant features 
After getting familiar with the PJVS system and the measurement setup and procedure, the next task was to 
investigate which system’s characteristics impact the stability and accuracy of the signals generated. Based on the 
knowledge of the system and using the results of measurements of signals with different parameters, the following 
characteristics were selected as more impactful: 
 

• Output voltage of PJVS 

• Critical current of array’s segments 

• Microwave frequency 

• Microwave power 

• Number of steps of the signal 

• Number of segments of the array 

• Amplitude of the signal 

• Phase of the signal 

• Frequency of the signal 

• Sampling frequency 
 
According to the possibilities of the system and considering that the digital twin should take control actions in the 
Virtual-to-Physical connection to achieve target accuracy in the PJVS output, the parameters selected to be optimized 
were: 
 

• Output voltage of PJVS 

• Critical current of array’s segments 

• Number of steps of the signal 

• Signal frequency of the signal 
 
After creating and validating the model and its predictions, this feature optimization will be performed. The stability 
of the signal steps and accuracy of the signal RMS value will be used as metrics to evaluate the performance of the 
model and take control actions that improve system behavior. 
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Synthetic data generation of PJVS signals 
Before start taking measurements, and due to the time consumed for the process of helium cleaning in the cryocooler 
and some software modifications that had to be made to take the measurements needed, a solution to be able to 
test different models that allowed making predictions of the system behavior without having the measurements was 
to generate synthetic PJVS signals to train the neural networks. Python software was programmed to achieve that, 
Figure 6 presents its block diagram. The variation of the parameters was selected considering the system's 
characteristics and ensuring that this selection had the most representative variability of the signals, and equation (1) 
was used to generate the theoretical PJVS stepwise approximated signals. Then, the digitizer effect in the 
measurement is simulated by multiplying by its gain and adding its offset. Some white noise is added to model the 
cabling, power line noise, and thermal effects. Finally, a digital FIR filter is convoluted with the resulting signal to add 
the transients that appear due to the digitizer’s output filter response to the transition between adjacent quantum 
voltage levels of the PJVS. 
 

 
Figure 6. Block diagram of the algorithm to generate synthetic PJVS signals. Marked in red are the parameters modified to add variations and 

obtain different signals that describe the system behavior. 

The variation of the parameters that were used to generate the waveforms was: 
 

• Signal Type: Sine waves 

• Amplitude: [1, 5, 10] V 

• Signal Frequency: [15.625, 31.25, 62.5] Hz 

• Number of Steps: [8, 16, 20] 

• Phase: [0] ° 

• Offset: [0] V 

• Microwave Frequency: [69599999998, 69599999999, 69600000000, 69600000001, 69600000002] Hz 

• Segments Configuration: [34813, 17406, 8704, 4352, 2176, 1088, 544, 272, 136, 68, 34, 17, 8, 4, 2, 1, 1, 1] 

• Sampling Frequency: [10000, 20000, 40000, 50000] Hz 

• Number of Periods: [1] 

• Digitizer Gain: [1.0] 

• Digitizer Offset: [0.000035] V   

• White Noise: [2.8e-7, 2.9e-7, 3.0e-7, 3.1e-7] V 
 
The combination of all these features gives a total of 2160 produced signals. Figure 7 depicts an example that 
compares a test-measured signal with the corresponding synthetic signal generated by the algorithm. The results 
show that a simple model based on the Josephson equation with the addition of a simulation of the digitizer effect 
and the noise in the setup, is a faithful representation of the system behavior and could be used to some extent to 
train the models based on neural networks. The major disadvantage is that not every physical phenomenon that 
affects the measurements and the system itself is represented in this model. That is why machine learning algorithms 
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were selected to develop the digital twin; because it could be possible to detect patterns not contemplated in this 
mathematical modeling and describe better the performance of the PJVS.  
 

Figure 7. Comparison of a synthetically generated signal with a measured signal. A 1 V peak amplitude, 31.25 Hz test signal (red) sampled at 
50 kHz with the corresponding synthetic generated signal by the algorithm (blue) is presented. Here 20 steps per period were used. 

 

Signal measurements with UME PJVS system 
Once software modifications and system synchronization were made, sine wave stepwise approximated signals were 
measured. As stated, Agilent 3458 was used to digitalize the signals generated with the PJVS system. Parameters such 
as peak-to-peak amplitude, signal frequency, number of steps, sampling frequency, and aperture time were set up 
manually in the software to take the measurements. The variation of the parameters of the waveforms was: 
 

• Signal Type: Sine waves 

• Amplitude peak-to-peak: [1, 1.5, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 19.7] V 

• Signal Frequency: [7.8125, 15.625, 31.25, 62.5, 125] Hz 

• Number of Steps: [8, 10, 16, 20] 

• Phase: [0] ° 

• Offset: [0] V 

• Microwave Frequency: [69600000000] Hz 

• Segments Configuration: [34813, 17406, 8704, 4352, 2176, 1088, 544, 272, 136, 68, 34, 17, 8, 4, 2, 1, 1, 1] 

• Sampling Frequency: [20000, 40000, 50000] Hz 

• Number of Periods: [5] 
 
The combination of all these features gives a total of 1260 measured signals. Figure 8 compares one of the measured 
signals with its corresponding PJVS theoretical signal. The difference that can be appreciated is that the measured 
signal has transient points due to the digitizer’s output filter response to the transition between adjacent quantum 
voltage levels of the PJVS, as stated previously. 
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Figure 8. Comparison of a theoretical PJVS signal with a measured signal. A 1 V peak amplitude, 31.25 Hz test signal (red, the steps are at the 

bottom) sampled at 40 kHz with the corresponding theoretical signal (blue) is presented. Here 16 steps per period were used. 

 
Model architecture and training procedure 
To train the model that will make the predictions a dataset was prepared using the most relevant features of the 
system. These characteristics were selected considering their relevance in system performance, several tests were 
performed and the results obtained were compared to determine this selection.  
 
Artificial Neural Networks (ANNs) were chosen as the Machine Learning algorithm for the model because of their 
ability to recognize complex, nonlinear relationships between input and output variables. They are universal function 
approximators, capable of learning any continuous function given enough data and the right architecture. Unlike 
traditional physics-based models, which require explicit equations derived from first principles, ANNs are data-driven, 
making them appropriate for systems with unknown or complex dynamics. Furthermore, they automatically extract 
features from raw data, reducing the need for manual preprocessing, and they handle noise adequately when trained 
using techniques such as dropout and regularization. Their scalability allows them to handle high-dimensional datasets 
like time series or multi-channel measurements, and their versatility makes them excellent for integration into real-
time applications [6]. These characteristics make ANNs especially effective for tasks like regression, which need 
precise predictions of physical quantities such as voltage. 
 
This type of neural network uses supervised learning, so the target (objective of the prediction) must be provided in 
training. The target selected was the difference between measured and theoretical PJVS voltage, defined as “error” 
in the dataset. 
 

𝐸𝑟𝑟𝑜𝑟(𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑) = 𝑉𝑃𝐽𝑉𝑆 (𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑𝑒𝑑) − 𝑉𝑃𝐽𝑉𝑆 (𝑡ℎ𝑒𝑜𝑟𝑖𝑐)  (2) 

 
The output of the digital twin becomes the prediction of the error added to the theoretical PJVS voltage, and in that 
way, PJVS signals can be produced from the prediction of this error.  
 

𝑉𝑃𝐽𝑉𝑆 (𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑) = 𝑉𝑃𝐽𝑉𝑆 (𝑡ℎ𝑒𝑜𝑟𝑖𝑐) + 𝐸𝑟𝑟𝑜𝑟(𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑)  (3) 

 
This gives the future behavior of the PJVS, and this information can be used to optimize the performance of the 
physical system. Table 1 shows an example of one point of a signal in the dataset. The full dataset consists of 1260 
randomly sorted measured sine stepwise approximated signals, using 5 periods for each signal. 
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Error (V) V_measured (V) Amplitude (V) Signal_freq (Hz) Steps MW_freq (GHz) 

0.014171063 -0.689885006 1.0 31.25 16 69.6 

TARGET FEATURES 

Table 1. Structure of the dataset used to train the neural networks. Here one point of a signal is represented as an example. 

 
The structure of the dataset is as follows: 
 

• Error: difference between measured and theoretical PJVS voltage, in (V). This is the target of the predictions. 

• V_measured: digitizer’s measured voltage, in (V).  

• Amplitude: programmed signal peak amplitude, in (V). 

• Signal_freq: signal frequency, in (Hz).  

• Steps: number of steps.  

• MW_freq: microwave frequency, in (GHz). 
 
A standard procedure widely used in deep learning was applied for the neural network training [7]. It consists of the 
following steps: 

1. Create a dataset with a representative sample of the signals, randomizing the order. In this case, 1260 signals 
with 5 periods each were used. 
2. Separate target from features. 
3. Separate between training (80%) and testing (20%) datasets. Some signals are not used in training so the model 
can be tested with previously unseen data. 
4. Normalize the features using MaxAbsScaler. Normalization prevents overfitting (a situation where the model 
learns the training data too well and it is not good to generalize the predictions of unseen data). Different scalers 
were tested, and better performance was reached with MaxAbsScaler, possibly because it considers the effect of 
negative values: 

• z = xi / |xmax|, where xi = sample i, xmax = maximum value. This means that each signal point is divided by 
the absolute value of the maximum signal value. 

5. Create a model of the neural network.  
6. Train the model with the train dataset.  
7. Evaluate the predictions on the testing datasets and calculate the metrics. 

 
Different models were programmed in Python using TensorFlow [8] and Keras [9] APIs to predict the error of the 
quantum voltage steps of the signals. A diagram of the structure of the neural network layers is detailed in Figure 9. 
The input layer has shape = 5 because there are 5 features in the dataset. The number of layers and neurons per layer 
sets the complexity of the model. Four dense layers with decreasing numbers of neurons are connected, using the 
Rectified Linear Unit (ReLU) as an activation function. The output layer has 1 neuron and the Linear activation function 
since the regression target is one value (the error of the measured voltage). Due to this, mean squared error (MSE) is 
chosen as the loss function and root mean squared error (RMSE) as the metric. After each dense layer, a 20% dropout 
layer was added to prevent overfitting, and this dropout was used to estimate the uncertainty of the model with the 
Monte Carlo Dropout method. 
 

 
Figure 9. Model architecture of the Artificial Neural Network. 
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The parameters used in this example are: 
 

• Activation function: Rectified Linear Unit (ReLU). 

• Optimizer: Adam, learning rate = 0.0001. 

• Loss: mean squared error (MSE). 

• Metric: root mean squared error (RMSE). 

• Batch Size: 16. 

• Epochs: 300. 

• Total parameters: 4252841. 
 
An important factor to consider is that these hyperparameters should be optimized to obtain the best results. Updates 
of the model will include variations to improve the performance.  
 
Results 
The test datasets were used to make predictions of signal errors. An example of an 8-step signal is shown in Figure 10. 
The error predicted depends on the voltage values of the steps, being the higher voltages the ones that differ the 
most with the measurements.  

 

Figure 10. Comparison of the predicted signal error (red) with the measured signal error (blue) of an 8-step signal. 
 

Uncertainty estimation of the model 
The uncertainty contribution of the most relevant parameters can be divided into two categories:  

1. Errors and uncertainties in the model:  

Different sources of errors and uncertainties in neural networks were investigated [10] and identified in these 

categories:  

• Numerical errors result from floating-point round-off errors from different computation orders in the neural 

network’s calculations. This is dependent on the Python libraries used [8, 9].  

• Epistemic Uncertainty (Model Uncertainty): This arises from the model's limited knowledge of the data and 

can be reduced by providing more data.  
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• Aleatoric Uncertainty (Data Uncertainty): Data bias due to a lack of information and variability in the system 

parameters. This results from noise inherent in the data and cannot be reduced by adding more data.  

 

2. Errors and uncertainties in the instruments:  

In the case of measurement instruments, the sources of error and uncertainty are:  

• Digitizer voltage measurements with Agilent 3458A digitizer. The device manual defines the uncertainties 

and can also be obtained from previous characterizations [11, 12].  

• White and power line noise in the system [13].  

• Quantization error from Josephson system resolution: ±72.5 µV.   

• Microwave frequency measurement. This is related to the stability of the Rubidium clock and can be obtained 

from a test report of the microwave synthesizer.  

• Cryocooler temperature measurements: extracted from calibration certificate, ±4 mK.  

The error of the voltage steps will be determined by comparing the predictions of the model with the theoretical 

voltage of the PJVS signal.   

The uncertainty of the neural network will be evaluated using the Monte Carlo Dropout (MC Dropout) method [14]. 

MC Dropout is a method used to estimate uncertainties in neural network predictions by interpreting dropout, 

typically used as a regularization technique, as a form of Bayesian approximation. Dropout randomly deactivates 

neuron connections during training to prevent overfitting. By keeping dropout active during inference and performing 

multiple forward passes, the predictions become stochastic, effectively sampling from an approximate posterior 

distribution over the model's parameters. 

The procedure to calculate the predictions and its uncertainty is as follows: 

1. Keep dropout active during test time (in inference mode). 

2. Perform N stochastic forward passes for the same input (typically 100000). 

3. Collect the N predictions to compute the mean prediction (average the N outputs to get the final prediction), 

and the uncertainty (variance or standard deviation of the N predictions). 

Figure 11 depicts an example of a 1 V peak-to-peak, 15.625 Hz signal sampled at 40 kHz. The sine wave has 8 steps 

per period. It can be observed that the uncertainty is higher in the transient points and the higher step voltages, which 

matches the results of the predictions. The uncertainty can be reduced if the dropout rate is reduced during the model 

training. Tests with a dropout rate of 15%, 10%, and 5% should be performed to compare the results. 
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Figure 11. Uncertainty estimation of the model using the Monte Carlo dropout method for an 8-step signal.  
 

Conclusions and Future Work 

The possibility of participating in this program represented a significant step toward developing a Digital Twin of the 
PJVS. Through this work, I gained valuable hands-on experience with the cryocooler and PJVS system operation, 
optimizing its setup and measurement processes. Critical configuration parameters and signals to be measured were 
identified, to enable targeted improvements in system behavior. To address limitations at the beginning of the 
measurement procedure, synthetic signals were generated, which were subsequently used to train various neural 
network models. These models were tested and evaluated, demonstrating their capacity to predict system deviations. 
 
Measurements of sine stepwise approximated signals were performed to validate the system's operation and enhance 
the dataset available for training. Methods for validating the DT and quantifying its uncertainty were explored, with 
Monte Carlo Dropout successfully employed to estimate uncertainty in neural network predictions.  
 
Additionally, participating in the CIPM MRA seminar provided insights into the crucial role of National Metrology 
Institutes (NMIs) in advancing measurement quality in industries such as health, environment, and science. It also was 
an excellent chance to engage with colleagues from Bureau International des Poids et Mesures (BIPM) and other NMIs 
to discuss metrology's challenges and opportunities. This project aligns with the objectives of the CIPM MRA, aiding 
compliance with its requirements and supporting the expansion of Calibration and Measurement Capabilities (CMCs) 
in the KCBD. These outcomes are expected to lead the way for declaring additional CMCs, further enhancing 
metrology's reach and improving traceability to the SI voltage unit.  
 
Moving forward, the next phase of this work will focus on expanding the measurement dataset to train the models 
more effectively. Testing with different neural network configurations and parameters, including adjustments to the 
dropout rate (e.g., 15%, 10%, and 5%), will aim to improve the performance and refine uncertainty estimations. The 
development of the DT will continue with particular emphasis on the Virtual-to-Physical connection, enabling real-
time feedback and adaptive control of the PJVS system. Validation of the DT will proceed through comparison with 
measurements from the physical system, ensuring reliability and robustness in its predictions. 
 
The knowledge gained from this project will be directly applied to advancing the Digital Twin and Artificial Intelligence 
initiative at INTI, contributing to the progress of my PhD thesis and the 22DIT01 ViDiT EURAMET project. Ongoing 
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collaboration with TÜBİTAK UME's Voltage Laboratory will continue, to publish a paper to disseminate the findings. 
The methodologies and insights developed here are expected to optimize measurement and calibration processes at 
INTI and TÜBİTAK UME, expanding their capabilities and promoting innovation in quantum metrology. This work 
provides a foundation for developing digital twins in electrical metrology, particularly for quantum voltage standards. 
 

Acknowledgments 

I want to thank BIPM officers Chingis Kuanbayev and Anderson Maina, for their guidance and support in the CIPM 
MRA seminar. Additional thanks to Héctor Laiz from INTI for his thoughtful recommendation letter, my boss Mariano 
Real, and my PhD director Ricardo Iuzzolino for their encouragement, expertise, and collaboration, which greatly 
enriched this work. From TÜBİTAK UME, I am sincerely thankful to Enver Sadikoğlu and Müge Atam for their assistance 
throughout the process.  
 
My deep and sincere gratitude to my mentor Mehedin Arifoviç. His support, knowledge, and generosity have been 
invaluable, and I am very thankful for his friendship and contributions to this endeavor.  
 
Special acknowledgment goes to Naylan Kanatoğlu, Ardinç Edis, Recep Orhan, Tezgül Öztürk, Serdar Uzun, and all the 
dedicated members of the Voltage Laboratory of UME, whose contributions helped achieve the objectives of this 
project. 
 
References 
 
[1] Project 22DIT01 ViDiT Trustworthy virtual experiments and digital twins. https://www.vidit.ptb.de. 
[2] B. D. Josephson, “Possible new effects in superconductive tunnelling,” Physics letters, vol. 1, no. 7, pp. 251–253, 
1962. 
[3] B. Jeanneret and S. Benz, “Application of the josephson effect in electrical metrology,” The European Physical 
Journal Special Topics, vol. 172, pp. 181–206, 06 2009. 
[4] Arifovic, Mehedin & Orhan, Recep & Kanatoğlu, Naylan. (2018). 10 V Programmable Josephson Voltage Standard 
Established in TÜBITAK UME. 1-2. 10.1109/CPEM.2018.8500902. 
[5] Y. -h. Tang, S. Solve and T. J. Witt, "Allan Variance Analysis of Josephson Voltage Standard Comparison for Data 
Taken at Unequal Time Intervals," in IEEE Transactions on Instrumentation and Measurement, vol. 60, no. 7, pp. 2248-
2254, July 2011, doi: 10.1109/TIM.2011.2132190. 
[6] Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep Learning. MIT Press. 
[7] Chollet, F. (2018). Deep Learning with Python. Manning Publications. 
[8] M. Abadi and others. TensorFlow: Large-scale machine learning on heterogeneous systems, 2015. Software 
available from tensorflow.org.  
[9] F. Chollet and others. Keras, 2015. https://keras.io.  
[10] Gawlikowski, J., Tassi, C.R.N., Ali, M. et al. A survey of uncertainty in deep neural networks. Artif Intell Rev 56 
(Suppl 1), 1513–1589 (2023). https://doi.org/10.1007/s10462-023-10562-9  
[11] Ozturk, Tezgul & Kohlmann, J. & Kieler, Oliver & Mohring, T. & Behr, Ralf & Çaycı, Hüseyin & Arifovic, Mehedin & 
Turhan, Saliha & Durak Ata, Lutfiye. (2014). Error analysis in waveforms synthesized with a combined josephson 
system for ac component characterization. CPEM Digest (Conference on Precision Electromagnetic Measurements). 
734-735. 10.1109/CPEM.2014.6898595.  
[12] T. C. Öztürk, S. Ertürk, A. Tangel and M. Arifoviç, "Using Programmable Josephson Voltage Standard for Static and 
Dynamic Gain Characterization of Integrating ADC," in IEEE Transactions on Instrumentation and Measurement, vol. 
69, no. 7, pp. 4425-4435, July 2020, doi: 10.1109/TIM.2019.2941360.  
[13] Lee, Aaron & Davis, Albert & Ratz, Paul & Przybysz, Anthony & Marakov, Alexander & Medford, Jim & Pesetski, 
Aaron & Przybysz, John. (2022). Finding and Eliminating Noise and Interference in a Test Stand for Josephson Digital 
Chips. 
[14] Gal, Y., & Ghahramani, Z. (2016). "Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep 
Learning". In Proceedings of the 33rd International Conference on Machine Learning (ICML), 2016. Available at 
arXiv:1506.02142. 

https://www.vidit.ptb.de/

