Report on Rapid UTC (UTCr)

METPA

BIPM Time Department

20th CCTF Meeting 17-18 September 2015

Summary

- Rapid UTC project
- Characteristics of UTCr
- UTCr computation
- Comparisons between UTCr and UTC

Rapid UTC project

- UTC is not adapted for real and quasi-real time applications.
 - UTC is calculated with one-month data batches, and available monthly in *BIPM Circular T* under the form of [*UTC-UTC*(*k*)] at five-day intervals;
 - Extrapolation of values over 10 to 45 days based on prediction models is necessary to many applications.
- The Rapid UTC project (UTCr) was presented at the CCTF(2012)
- Evolution since CCTF(2012)
 - November 2012: Introduction of drift from UTC in UTCr clock prediction
 - April 2013: Final report to the CCTF WG on TAI
 - June 2013: Go-ahead from the WG on TAI
 - July 2013: UTCr an official BIPM product

Characteristics of UTCr

- Based on daily data reported (daily) by contributing laboratories;
- Weekly solution, generated quasi automatically.
 - Product identified by the week number = YYWW
- Computation interval of 27 to 31 days (sliding solution);
- Weekly access to daily values of [UTCr-UTC(k)]
- Stability of UTCr expected to be about similar to UTC since participating laboratories represent at least 70% of the clocks in UTC.
- UTCr algorithm originally similar to UTC but evolved differently
 - Quadratic frequency prediction since September 2011 in UTC, November 2012 in UTCr;
 - New weighting procedure implemented January 2014 in UTC, not in UTCr.
- Accuracy ensured by simple steering in time to UTC

Bureau International des Poids et Mesures

Four steps of UTCr computation: 1/4

- 1. Data checking
 - Daily data, reported daily by laboratories.
 - Data of day D must be uploaded before day D+2, 12:00 UTC on ftp server, following standard file naming conventions (see guidelines in

ftp://tai.bipm.org/UTCr/Documents/)

- Automatic tasks carried out:
 - · detection of input data
 - sending reminders to labs!
 - checking the format of recognized data
 - · report on unknown or new data file

Bureau
International des
Poids et
Mesures

Four steps of UTCr computation: 2/4

Four steps of UTCr computation: 3/4

- 3. Stability algorithm
 - Algorithm similar to original UTC's ALGOS, with quadratic prediction (since November 2012) for $h_i'(t)$.

$$UTCr - h_{j} = \sum_{i=1}^{N} w_{i} [h'_{i}(t) - x_{i,j}(t)]$$

- Daily clock data reported at 0h UTC
- Computation interval between 27 and 31 days, starting with a "TAI standard date" and ending with Sunday of the week to be published.
- Weight computed from the clock stability over 11 past 30-day intervals vs. The most predictable clocks have a bigger weight in UTC.
- Maximum weight = 2.5/Nclocks, 4/Nclocks in UTC algorithm.
- Test for "abnormal behavior" (different in UTCr and in UTC).

Bureau

International des

- Poids et

Four steps of UTCr computation: 4/4

Steering to UTC 4.

Bureau

Each month, after CirT computation, the past UTCr Clock data [UTCr-Clock] are replaced by the newly computed [UTC-Clock]. See red diamonds on the plot. This ensures the steering of UTCr to UTC.

Publication of UTCr

Every Wednesday before 18:00 UTC on <u>ftp://tai.bipm.org/UTCr/Results/</u> and on the regular Time Dpt ftp server.

Also ASCII files with UTCr-UTC(k)

Results of the official UTCr product since July 2013;

Back results of the pilot experiment stage in subdirectory Results/pilot_experiment;

Bureau International des Poids et Mesures

UTCr_1344 2013 NOVEMBER 06, 12h UTC

BUREAU INTERNATIONAL DES POIDS ET MESURES ORGANISATION INTERGOUVERNEMENTALE DE LA CONVENTION DU METRE PAVILLON DE BRETEUIL F-92312 SEVRES CEDEX TEL. +33 1 45 07 70 70 tai@bipm.org

Computed values of [UTCr-UTC(k)]

Date	2013 Oh UTC MJD	CT 28 56593	OCT 29 56594	OCT 30 56595	OCT 31 56596	NOV 1 56597	NOV 2 56598	NOV 3 56599
Laboratory k [UTCr-UTC(k)]/ns								
AOS	(Borowiec)	0.3	0.6	0.1	-0.3	-0.4	-1.2	-1.0
BEV	(Wien)	-36.1	-37.0	-31.8	-25.5	-26.1	-20.5	-20.9
CH	(Bern-Wabern)	-3.7	-6.4	-7.6	-8.3	-8.2	-9.1	-9.5
CNM	(Queretaro)	-5.4	-6.4	-5.0	-5.8	-5.3	-5.9	-6.6
CNMP	(Panama)	0.0	-1.6	-8.5	-13.2	-23.9	-17.1	-25.4
DMDM	(Belgrade)	-13.1	-16.6	-17.5	-22.3	-30.5	-31.0	-29.4
DTAG	(Frankfurt/M)	240.8	240.5	239.0	239.9	238.4	235.1	233.7
IFAG	(Wettzell)	-863.1	-863.1	-865.7	-871.3	-875.1	-876.9	-875.4
IGNA	(Buenos Aires)	4621.9	4637.8	4654.7	4669.3	4686.0	4705.1	4724.0
INTI	(Buenos Aires)	62.2	61.0	61.3	60.7	67.8	75.9	73.1
IT	(Torino)	-8.8	-9.2	-8.9	-9.0	-9.2	-10.3	-10.0
KRIS	(Daejeon)	-16.0	-16.3	-15.8	-15.7	-15.3	-15.7	-15.0
LT	(Vilnius)	410.7	402.9	393.9	396.9	391.9	389.0	382.2
MSL	(Lower Hutt)	782.4	781.8	791.7	802.6	813.9	828.0	842.6
NAO	(Mizusawa)	-20.3	-23.1	-23.2	-20.5	-23.4	-23.8	-25.4
NICT	(Tokyo)	10.9	10.6	10.4	10.2	10.0	8.9	8.3
NIM	(Beijing)	-7.8	-7.7	-7.8	-9.1	-8.5	-9.7	-9.9
NIMT	(Pathumthani)	0.1	1.8	2.5	-2.1	-2.3	-1.0	0.0
NIST	(Boulder)	-1.4	-1.9	-2.7	-3.5	-3.5	-4.3	-3.9
NMIJ	(Tsukuba)	0.6	0.3	0.0	-0.4	-0.3	-1.1	-1.2
NMLS	(Sepang)	1119.1	1104.1	1084.3	1072.6	1053.4	1037.7	1018.2
NPLI	(New-Delhi)	-3.7	-3.4	-3.7	-4.2	-4.0	-3.6	-3.3
NRC	(Ottawa)	-22.6	-19.6	-22.1	-20.6	-26.5	-26.6	-22.8
NRL	(Washington DC)	-4.6	-4.4	-4.2	-4.1	-3.4	-2.1	-1.1
NTSC	(Lintong)	-0.1	-0.2	-1.3	0.7	-2.6	-1.9	-3.6
ONRJ	(Rio de Janeiro)	-11.8	-12.1	-13.0	-13.5	-14.8	-14.3	-15.0
OP	(Paris)	-3.1	-2.8	-3.1	-3.3	-3.2	-3.6	-3.4
ORB	(Bruxelles)	-11.4	-10.6	-10.7	-12.9	-12.4	-15.2	-17.3
PL	(Warszawa)	38.2	38.8	35.7	32.6	29.9	32.5	29.1
PTB	(Braunschweig)	-6.9	-6.6	-7.1	-7.7	-8.1	-8.7	-8.5
ROA	(San Fernando)	0.4	0.6	0.2	-1.1	-1.8	-3.2	-4.0
SCL	(Hong Kong)	33.7	35.6	27.5	34.7	29.3	32.4	28.1
SG	(Singapore)	-17.2	-17.9	-19.2	-20.6	-19.2	-20.2	-19.4
SP	(Boras)	-6.4	-5.7	-6.3	-6.9	-7.2	-7.6	-7.5
SU	(Moskva)	-2.0	-1.7	-2.1	-2.4	-2.2	-2.6	-1.9
TL	(Chung-Li)	-5.6	-6.2	-6.9	-7.4	-7.8	-8.9	-8.1
UME	(Gebze-Kocaeli)	1363.3	1367.5	1369.9	1370.5	1376.8	1380.7	1379.1
USNO	(Washington DC)	-3.4	-3.8	-4.2	-5.0	-5.1	-5.3	-5.5
VSL	(Delft)	-23.0	-22.2	-22.0	-20.5	-18.3	-18.8	-12.9

UTC remains available from the monthly Circular T at (http://www.bipm.org/jsp/en/TimeFtp.jsp?TypePub=publication).

Comparisons between UTCr and UTC

Not a single way to estimate UTCr-UTC.

We use a weighted average over the laboratories participating to UTCr:

Conclusions

- UTCr started as a pilot experiment in January 2012
- Declared an official product in July 2013 (week 1336)
- Published Metrologia 51 33, 2014
- Impact of UTCr
 - on UTC contributing laboratories: More frequent assessing of the UTC(K) steering, and consequently better stability and accuracy of [UTC(k)]; Enhanced traceability to UTC.
 - on users of UTC(K): Access to a better "local" reference, and indirectly, better traceability to the UTC "global" reference;
 - on GNSS: Better synchronization of GNSS times to UTC, through improved UTC and UTC(k) predictions.
- UTC laboratories wishing to participate, see the information in <u>ftp://tai.bipm.org/UTCr/Documents/</u>

THANK YOU

BIPM

METPO

Thank you to all participating laboratories

www.bipm.org