

Silicon spheres for the realization of the new kilogram definition

CCM, 17 May 2019

Horst Bettin, PTB Germany

Counting atoms: XRCD method

Use of a silicon crystal!

- 1. Volume a_0^3 of the unit cell
- 2. Volume of an atom: $a_0^3/8$
- 3. Volume V of a sphere
- 4. Number *N* of the atoms

$$N = \frac{V_{\rm Si}}{v_{\rm Atom}} = \frac{V_{\rm Si}}{(a^3 / 8)}$$

Realization of the mass unit

*m*_{SL}: mass of surface layers

Partners		Lat paraı Abs.	tice neter Rel.	Sphere volume	Sphere mass	Molar mass	Crystal perfection	Surface	Sphere fabrication	
BIPM	BIPM				x			H₂O		
	INRIM	х				³⁰ Si	x			
*	ITRI				х			2019?		
÷	METAS							XPS		
*I	NIM			2019?	?	x		Х?	?	
	NIST		?			x				
* *	NMI-A								x	
	NMIJ		x	x	x	x	x	x		
*	NRC					x				
	PTB	2019?	2019?	x	x	x	x	x	x	

CODATA 2017 Special Adjustment

Si28 crystals

Published uncertainties in 10⁻⁹

Quantity	Si28kg01a (NMIJ)	Si28kg01a (PTB)	Si28kg01b (PTB)
Molar mass	1.5	1.5	1.3
Sphere mass	5.9	6.1	6.1
Sphere surface	7.9	7.6	6.0
Sphere volume	19.5	7.0	7.0
Lattice parameter	5.2	5.2	5.2
Point defects	4.7	4.7	6.2
Total uncert. $(k = 1)$	23.0	14.1	14.0

Advantages of the XRCD experiment

- Only the surface layer has to be measured each time in the realizing lab
- Volume measurements every 5 years, e.g. at PTB or NMIJ
- Molar mass, impurities etc. only once
- Si-28 sphere can be purchased
- Surface measurement is "state of the art", can be set up within about two years.
- Relative uncertainty for the mass unit of about 1 x 10⁻⁸.

Main progress of the XRCD experiment

- Third and fourth ²⁸Si single crystals were grown
- One ²⁸Si sphere was sold to ITRI/Chinese Taipei (with the construction details of the XRF/XPS apparatus)

²⁸Si single crystals of PTB

sold to ITRI/Chinese Taipei

Si28-31Pr11, April 2018 m = 5682 g, 99.9985 % ²⁸Si

Future progress of the XRCD experiment

- Measurements of existing crystals will be completed 2019
- Two more ²⁸Si single crystals (4 spheres) are to come in 2019
- New lattice parameter apparatus at PTB nearly operational
- Project to simulate the carbon concentration distribution in the Si-28 crystals together with the Leibniz-Institute of Crystal Growth (IKZ) in Berlin
- Uncertainty of surface measurements to be improved.

Relative measurements to check differences between the ²⁸Si crystals:

- Mass differences
- Density differences by the pressure-of-flotation method
- Lattice parameter difference measurements are planned
- Molar mass difference measurements?

Natural Silicon spheres

- As secondary mass standards: stable, mass can be "reset" by cleaning, sphere can be used as mass standard immediately after cleaning
- Molar mass measurements for natural silicon: uncertainty about 1 ppm, this is sufficient for small samples (below 1 g)
 Precondition: homogeneity of molar mass in small dimensions
- kg realization after density comparison to a Si-28 sphere, Si-28 spheres are primary density standards (no volume or mass measurement of the sphere necessary)

Realization of the mass unit

 $m_{\rm SL}$: mass of surface layers

$$m_{\rm sphere} = \frac{2 h R_{\infty}}{c \alpha^2} \frac{\sum x ({}^i {\rm Si}) A_{\rm r} ({}^i {\rm Si})}{A_{\rm r} ({\rm e})} \frac{8 V_{\rm core}}{a^3} - m_{\rm deficit} + m_{\rm SL}$$

Neglecting surface layers and point defects:

 $m_{\text{sphere}} = \frac{2 h R_{\infty}}{c \alpha^2} \frac{\sum x (^{i}\text{Si}) A_{\text{r}} (^{i}\text{Si})}{A_{\text{r}} (e)} \frac{8 V_{\text{core}}}{a^3}$

yields the density of the sphere and a direct realisation of the density unit:

$$\rho_{28} = \frac{m_{\text{sphere}}}{V_{\text{core}}} = \frac{2 h R_{\infty}}{c \alpha^2} \frac{\sum x (^i\text{Si}) A_r (^i\text{Si})}{A_r (e)} \frac{8}{\alpha^3}$$

(No mass or volume determination of the sphere is necessary!)

Natural silicon: a less expensive alternative PB

- By means of a hydrostatic comparison the density of ²⁸Si can be transferred to a ^{nat}Si sphere
 - > Only the density of the ²⁸Si sphere has to be known
 - Volume and mass of the ²⁸Si sphere will not be used
- After an accurate determination of the volume of the sphere, the ^{nat}Si sphere is a primary realisation of the new kg ("quasi-primary")

Physikalisch-Technische Bundesanstalt Braunschweig und Berlin Bundesallee 100

38116 Braunschweig

Germany

Dr. Horst Bettin Telefon: +49 531 592-1800 E-Mail: horst.bettin@ptb.de

Small masses

 Mass of small silicon samples can be determined by density and volume measurements:

$$m = \rho V$$
.

Also for natural silicon!

Precondition: homogeneity of the density in small dimensions