Frequency standards in TAI and realization of TT(BIPM)

Gérard Petit and Gianna Panfilo Bureau International des Poids et Mesures 92312 Sèvres Cedex, France gpetit@bipm.org

19th CCTF - 13-14/09/2012

TT(BIPMxx)

- As TAI is computed in real time and never corrected in retrospect, it is not optimal. Therefore the BIPM computes a post-processed time scale TT(BIPM).
- Each new version TT(BIPMxx) updates and replaces the previous one.
- TT(BIPMxx) calculation
 - Post-processed using all available PFS data, as of year 20xx.
 - Complete re-processing starting 1993 (possibly with change of algorithm).
 - f(EAL) is estimated each month using available PFS. Monthly estimates are smoothed and integrated to obtain TT(BIPMxx).
- Last realization: TT(BIPM11), released in January 2012. ftp://tai.bipm.org/TFG/TT(BIPM)/TTBIPM.11

TT(BIPMxx)

- No significant change in the computation of TT(BIPM) since CCTF'2009.
- Since 2010, a prediction of TT(BIPM) has been published each month
 - See the current one in ftp://tai.bipm.org/TFG/TT(BIPM)/TTBIPM.11.ext
- Since August 2011, a monthly computation of TT(BIPM) is performed to compute the clock drift to be used for TAI, but is not published.

55919805.5522	27.6474	
55929805.8331	27.0936	I Research and President states and a state of the state
55929806.1135	27.6501	: Extended III201 with I= 699.1 & d= 3.5
55934506.3940	27.6516	
55939306.6749	27.6531	
30344000.9548	27.0090	
55949307.2352	27.6561	
00904807.5156	27.6576	I Reserved WELTON when the data of the state
55959307.7960	27.6589	: Extended III202 with I* 649.0 & d* 3.1
25369308.0769	27.6603	
-808.3567	27.0010	
-508.6371	27.0030	
559/9808.9174	21.0013	
55964809.1978	27.000/	I Personal TTIDAD with the SAT D +
00989809.4776	27.6679	: Extended 111203 with Im 647.7 & dm 3.9
	27.0091	
10393, -810,0372	27.0700	
56004310.3170	27.6725	
-010.3965	27.0794	
	27.0758	I Pursueded WELDAA with day 240 C
-011.1567	27.6769	: Axcended III209 With I= 090.5 & d= 2.6
56024511.4369	27.6781	
-d11.7170	27.0792	
-811.9971	27.0503	
-012.2773	27.0015	
-012.0574	27.6526	i Furnandad TT1305 with fm 640 to da 5 f
56049812.8373	27.6837	: Excended III205 with f= 648.1 & d= 2.5
10034, -013,11/4	2710037	
10033813.3973	27.0000	
00001, -013.0773	27.6569	
	27.05/9	
-014.2373	27.6030	I Extended TT1206 with fm 647 6 4 4- 2 6
-014.01/U	27.6301	: rwrenneg illinge with Im . eavye ? Gm 312
-019.7900	27.6912	
10003015 0000	27.6923	
-010.3003	27.6934	
-015,0360	27.6995	
-d15.9155	27.0950	I Reported TT1007 with the state of the
-810,1957	27.0303	: Extended IIIX0/ WICh I= 040.0 & d= 1.6
00114d10.4/56	27.6970	
-010.7556	27.6977	
56129517.0355	27.6984	
00149017.3154	27.6991	
56134517.5954	27.6997	
00133017.0753	£7.7009	

TT(BIPM11)

- Frequency accuracy of TT(BIPM) has regularly decreased since the introduction of Cs fountains from 2.5x10⁻¹⁵ in 1999 to <1x10⁻¹⁵ since 2004, <5x10⁻¹⁶ since 2008 ~2-3x10⁻¹⁶ in 2012.
- It directly depends on the uncertainty budget of the PFS

TT(BIPM) allows to estimate the accuracy of TAI

TT(BIPM) allows to estimate the performance of PFS

Contributions of frequency standards to TAI

- More than four Cs fountain evaluations each month since 2009.
- Median u_B uncertainty now $< 4x10^{-16}$
- Raw averaging put 1-month uncertainty of TAI frequency at $\sim 2x10^{-16}$ (true evaluation is close to this value).

Contributions of frequency standards to TAI

- Little change in Circular T for the publication of PFS evaluations between April 2009 (top) and July 2012 (bottom)
 - 10⁻¹⁷ resolution
 - $u_{B}(Ref)$
- More later for Secondary frequency standards

Standard	Period of	d	u _A	u _B	$Ref(u_B)$	U _{1/Lab}	U _{1/Tai}	и	Note		
PTB-CS1	54919 54949	6.9	5.0	8.0	T148	0.0	0.1	9.4	(1)		
NIST-F1	54919 54949	5.5 6.8	3.0	12.0	T214	0.0	0.1	12.4	(2)		
NMIJ-F1	54919 54949	6.2	0.7	3.9	T213	0.3	0.5	4.0	(3)		
SYRTE - JPO	54919 54949	4.3	0.7	6.3	T160	0.3	0.3	6.4	(4)	A mmil 2000	
SYRTE - FO1	54919 54949	4.7	0.3	0.4	T227	0.1	0.3	0.6	(4)	Аргіі 2009	
SYRTE - FO2	54934 54949	5.1	0.5	0.5	T227	0.1	0.6	0.9	(4)	1	
SYRTE - FOM	54919 54944	6.1	0.2	0.7	T184	2.0	0.4	2.2	(5)		
Notes: (1) Continuously operating as a clock participating to TAI (2) Report 23 APR. 2009 by NIST (3) Report 28 APR. 2009 by NMIJ (4) Report 04 MAY. 2009 by LNE-SYRTE (5) Report 04 MAY. 2009 by LNE-SYRTE. FOM was in operation at CNES in Toulouse and the value u_l/lab also accounts for the GPS time transfer between Toulouse and Paris.											
The second 54559-54949 noted above	The second table gives the BIPM estimate of d , based on all available PFS measurements over the period MJD 54559-54949, taking into account their individual uncertainties and characterizing the instability of EAL as noted above. u is the computed standard uncertainty of d										
	Period of esti	mation	d		u						
	54919-549	49	5.1x1	0-15	0.4x10 ⁻¹⁵	(2)	DO9 MAR	29 - 2	2009 APR 28)		
										BIPM Circular T 256 - 4	

Standard	Period of Estimation	ď	u _A	u _B	U _{1/Lab}	U _{1/Tai}	и	Ref(u _B)	u (Ref)	Note	
PTB-CS1 PTB-CS2 NIST-F1 SYRTE-F01 SYRTE-F02 SYRTE-F02 PTB-CSF2 Notes:	56104 56139 56104 56139 56089 56114 56104 56129 56099 56119 56119 56139 56124 56139	- 14 . 58 - 0 . 93 2 . 07 2 . 05 1 . 52 1 . 25 1 . 99	6.00 3.00 0.34 0.30 0.25 0.20 0.21	8.00 12.00 0.31 0.55 0.24 0.24 0.39	0.00 0.00 0.25 0.12 0.23 0.14 0.02	0.06 0.06 0.23 0.23 0.28 0.28 0.28 0.12	10.00 12.37 0.57 0.68 0.50 0.44 0.46	T148 T148 T214 T227 T227 T227 T227 T287	8. 12. 0.35 0.72 0.65 0.65 0.41	(1) (1) (2) (3) (3) (3) (3) (4)	July 2012
(1) Contin (2) Report (3) Report (4) Report	 Continuously operating as a clock participating to TAI Report 31 JUL. 2012 by NIST Report 02 AUG. 2012 by LNE-SYRTE Report 01 AUG. 2012 by PTB 										
The second 55744-5613 noted abov	The second table gives the BIPM estimate of <i>d</i> , based on all available PFS measurements over the period MJD 55744-56139, taking into account their individual uncertainties and characterizing the instability of EAL as noted above. <i>u</i> is the computed standard uncertainty of <i>d</i>										
	Period of est	imation	d 1.6v	10-15	U 0.3×10:	15 (2012 10	N 26 2	012 1111	21)	
	50104-50	1133	1.04	10	0.3710		2012 30	n 20 - 2	UIC JUL	. 51)	BIPM Circular T 295 - 4

Primary frequency standards in 2010

Primary Standard	Type /selection	Type B std. Uncertainty / 10 ⁻¹⁵	Operation	Comparison with	Number/typical duration of comp.
IT-CSF1	Fountain	(0.5 to 0.9)	Discontinuous	H maser	6 / 15-35 d
NICT-CSF1	Fountain	(0.9 to 1.0)	Discontinuous	UTC(NICT)	2 / 15-25 d
NIST-F1	Fountain	0.31	Discontinuous	H maser	7 / 15-25 d
NMIJ-F1	Fountain	3.9	Discontinuous	H maser	5 / 15-35 d
NPL-CSF2	Fountain	(0.40 to 0.59)	Discontinuous	H maser	18 (8 in 2009)/10-40 d
PTB-CS1	Beam /Mag.	8	Continuous	TAI	12 / 30 d
PTB-CS2	Beam /Mag.	12	Continuous	TAI	8 / 30 d
PTB-CSF1	Fountain	(0.76 to 0.81)	Discontinuous	H maser	4 / 15-30 d
PTB-CSF2	Fountain	0.60	Discontinuous	H maser	1 / 15 d
SYRTE-F01	Fountain	(0.40 to 0.48)	Discontinuous	H maser	6 / 15 to 30 d
SYRTE-FO2	Fountain	(0.38 to 0.41)	Becoming nearly continuous	H maser	9 / 15 to 30 d
SYRTE-FOM	Fountain	(0.82 to 0.86)	Discontinuous	H maser	5 / 15 to 35 d
SYRTE-JPO	Beam /Opt.	6.3	Nearly continuous	H maser	9 / 5 to 35 d

- 10 fountains and 3 beams (one stopping operation)
- 9 fountains with u_B uncertainty < 1×10^{-15}
- 52 evaluations of fountains

Primary frequency standards in 2011

Primary Standard	Type /selection	Type B std. Uncertainty / 10 ⁻¹⁵	Operation	Comparison with	Number/typical duration of comp.
IT-CSF1	Fountain	0.7	Discontinuous	H maser	1 / 25 d
NICT-CSF1	Fountain	(1.0 to 1.2)	Discontinuous	UTC(NICT)	2 / 10-20 d
NIST-F1	Fountain	0.31	Discontinuous	H maser	5 / 15-30 d
NMIJ-F1	Fountain	3.9	Discontinuous	H maser	2 / 30 d
NPL-CSF2	Fountain	0.40 then 0.23	Discontinuous	H maser	7 / 15-25 d
PTB-CS1	Beam /Mag.	8	Continuous	TAI	12 / 30 d
PTB-CS2	Beam /Mag.	12	Continuous	ТАІ	7 / 30 d
PTB-CSF1	Fountain	(0.74 to 0.79)	Nearly continuous	H maser	10 / 15-25 d
PTB-CSF2	Fountain	(0.36 to 0.56)	Discontinuous	H maser	6 / 15-25 d
SYRTE-FO1	Fountain	(0.42 to 0.49)	Discontinuous	H maser	6 / 10 to 25 d
SYRTE-FO2	Fountain	(026 to 0.39)	Nearly continuous	H maser	12 / 15 to 35 d
SYRTE-FOM	Fountain	(0.82 to 0.92)	Discontinuous	H maser	6 / 20 to 30 d

- 10 fountains and 2 beams
- Some improvement in u_B uncertainty in three fountains
- 53 evaluations of fountains
- Two fountains maintain nearly continuous evaluations

Evaluation of PFS performance

• Study for CPEM'2012 (to be published)

Comparison of frequency standards used for TAI

G. Petit^{*} and G. Panfilo^{*}

- 1. Comparisons using TT(BIPM)
 - Study each PFS by comparison to TT(BIPM)
 - Estimate one frequency bias $Y_i = \langle y(PFS_i TT(BIPM)) \rangle$ for each PFS_i
 - Estimate goodness of fit for each PFS_i (Reduced Chi square χ^2 , Birge ratio R_B)
 - Study the ensemble of PFS:
 - Estimate if the distribution of frequency biases Y_i is consistent with the uncertainties u_{Bi}

2. Direct comparison of PFS

19th CCTF - 13-14/09/2012

Comparison of PFS to TT(BIPM): The ensemble of PFSs

- The mean frequency bias computed for each fountain is plotted with mean uncertainty u_B
- The Birge ratio of this series is 0.86: No indication of underestimation of u_B or of any significant systematic shift.
 - Most significant shift: SYRTE-FO1 = $-1.45 u_B$
- This confirms the estimations given for the accuracy of TT(BIPM)

Secondary frequency standards

• CCL-CCTF working group merged in 2005: producing and maintaining a single list of *Recommended frequency standard values for applications including the practical realization of the metre and secondary representations of the second.*

CIPM-2006 / 2009:

Unperturbed optical transition $5s^2 {}^{1}S_0 - 5s 5p {}^{3}P_0$ of ${}^{87}Sr: 1 \times 10^{-15}$ Unperturbed ground-state hyperfine transition of ${}^{87}Rb: 3 \times 10^{-15}$ Unperturbed optical $5d^{10} 6s {}^{2}S_{1/2} (F = 0) - 5d^9 6s^2 {}^{2}D_{5/2} (F = 2)$ transition of ${}^{199}Hg^+: 3 \times 10^{-15}$ Unperturbed optical $5s {}^{2}S_{1/2} - 4d {}^{2}D_{5/2}$ transition of ${}^{88}Sr^+: 7 \times 10^{-15}$ Unperturbed optical $6s {}^{2}S_{1/2} (F = 0) - 5d {}^{2}D_{3/2} (F = 2)$ transition of ${}^{171}Yb^+: 9 \times 10^{-15}$

19th CCTF - 13-14/09/2012

Contributions of secondary frequency standards to TAI

- For some secondary frequency standards (SFS), all systematic effects can be estimated with an uncertainty equivalent to or lower than for the best PFS, e.g.
 - ${}^{87}\text{Sr:} < 2x10^{-16} \text{ (several teams)}$
 - ⁸⁷Rb : 4x10⁻¹⁶ (Guéna et al, 2010; 2012)
 - Some other transitions may have better uncertainty of systematic effects, but not yet in the list of SFS
- First SFS report to the BIPM in January 2012: SYRTE FO2(Rb)
- The BIPM Time department expects to receive new SFS evaluations in order to provide visibility and to get experience with their possible use in TAI steering.

SYRTE FO2(Rb) in TAI

- First SFS report to the BIPM in January 2012: SYRTE FO2(Rb)
 - Submitted for review to the WGPFS, like for a new PFS.
 - 13 evaluations published in Circular T193 June 2012 => New table
 - More each month.

In the third table, *d* is obtained on the given periods of estimation by comparison of the TAI frequency with that of the given individual Secondary Frequency Standards (SFS). This table is organized similarly to the first table, with the addition of u_{srep} which represents the recommended uncertainty of the secondary representation of the second and of Ref(u_s) which provides the reference for the frequency of the transition and its uncertainty user. All values are expressed in 10⁻¹⁵ and are valid only for the stated period of estimation. Note that SFS are not used for the estimation of *d* provided in the second table above, nor for determining the steering correction reported in section 3.

Standard	Period of	d	u _A	и _в	U _{1/Lab}	U _{1/Tai}	и	u _{spep} Re	ef(x) l	$Ref(u_{B})$	$u_{\rm B}({\rm Ref})$ No	ote
SYRTE - FORb	55194 55224	3.98	0.40	0.46	0.11	0.43	0.75	3.00	[1]	[2]	0.45	(1)
SYRTE - FORb	55224 55254	2.97	0.20	0.44	0.11	0.46	0.67	3.00	[1]	[2]	0.45	(1)
SYRTE - FORb	55254 55274	2.80	0.30	0.53	0.11	0.66	0.90	3.00	[1]	[2]	0.45	(1)
SYRTE - FORb	55354 55374	4.59	0.35	0.57	0.11	0.66	0.94	3.00	[1]	[2]	0.45	(1)
SYRTE - FORb	55409 55429	3.17	0.20	0.46	0.11	0.66	0.83	3.00	[1]	[2]	0.45	(1)
SYRTE - FORb	55854 55894	3.04	0.20	0.46	0.17	0.15	0.55	3.00	[1]	[2]	0.45	(1)
SYRTE - FORb	55894 55924	1.66	0.20	0.44	0.11	0.20	0.53	3.00	[1]	[2]	0.45	(1)
SYRTE - FORb	55924 55949	1.15	0.30	0.39	0.10	0.23	0.55	3.00	[1]	[2]	0.45	(2)
SYRTE - FORb	55954 55969	0.63	0.30	0.38	0.14	0.37	0.62	3.00	[1]	[2]	0.45	(2)
SYRTE - FORb	55969 55984	2.03	0.40	0.38	0.25	0.37	0.71	3.00	[1]	[2]	0.45	(2)
SYRTE - FORb	55984 56014	2.38	0.30	0.43	0.11	0.20	0.57	3.00	[1]	[2]	0.45	(2)
SYRTE - FORb	56014 56044	0.96	0.20	0.41	0.14	0.20	0.52	3.00	[1]	[2]	0.45	(2)
SYRTE - FORb	56044 56074	0.80	0.20	0.32	0.11	0.20	0.44	3.00	[1]	[2]	0.45	(3)

[1] CIPM Recommendation 1 (CI-2006) "Concerning secondary representations of the second" in Proces-Verbaux des Séances du Comité International des Poids et Mesures, 96th meeting (2006), 2007, 258 p. [2] J. Guéna et al., "Demonstration of a Dual Alkali Rb/Cs Fountain Clock", IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 57 (3), pp. 647-653, 2010. J. Guéna et al., "Progress in atomic fountains at LNE-SYRTE", IEEE Trans. Ultrason. Ferroelectr. Freq. Control 59 (3), pp. 391-410, 2012.

- -Notes :
- (1) Report 19 January 2012 by LNE-SYRTE. SYRTE-FORD is the fountain SYRTE-FO2 operated with Rb87 atoms. It has been approved by the CCTF Working Group on Primary Frequency Standards on 24 May 2012.
- (2) Report 04 May 2012 by LNE-SYRTE.
- (3) Report 31 May 2012 by LNE-SYRTE.

Correction to the reference frequency of ⁸⁷Rb

- Comparisons to PFS indicate that the Rb transition recommended frequency is off by about -1.5×10^{-15} .
 - Local comparison by SYRTE to SYRTE PFS: -1.48x10⁻¹⁵
 - Based on data over 1998-2012, communicated by SYRTE to the WG on PFS
 - Comparison to TT(BIPM11): -1.67x10⁻¹⁵.
 - Based on data over 2010-2012, communicated by SYRTE to the BIPM
 - Comparison to the best estimate of PFS over the SFS evaluation intervals: -1.67x10⁻¹⁵
 - Based on same data. Results (red diamonds) much less dispersed: $R_B = 0.64$

Conclusions

- Primary frequency standards still continue to gain in accuracy ("typical" rate is one order of magnitude every 10 years). We are at $2-3x10^{-16}$.
- The full accuracy of PFS is not completely passed to TAI and TT(BIPM) because of
 - the noise of frequency transfer
 - (possibly) some slightly inconsistent PFS evaluations
- Nevertheless the PFS reported uncertainties are globally consistent with the data.
 - this implies that TT(BIPM) accuracy is $\sim 3x10^{-16}$ in 2012 and the TAI frequency is known with the same uncertainty.
- We need evaluations of secondary standards
 - to gain experience and promote their use
 - to determine their reference frequency
 - to prepare for future changes

