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On 14 October 1999, the directors of the national metrology institutes (NMIs) of thirty-

eight Member States of the Metre Convention and representatives of two international 
organizations signed a Mutual Recognition Arrangement (MRA) for national measurement 
standards and for calibration and measurement certificates issued by NMIs.  This MRA was a 
response to a growing need for an open, transparent and comprehensive scheme to give users 
reliable quantitative information on the comparability of national metrology services and to 
provide the technical basis for wider agreements negotiated for international trade, commerce 
and regulatory affairs. 

Signatories of the MRA committed themselves to active participation in Key Comparison 
(KC) studies conducted under the auspices of the Bureau International des Poids et Mesures 
(BIPM).  While similar in design to standard proficiency test (PT) interlaboratory studies, the 
KCs are unique in several aspects: 

� KC participants are the entire population of NMIs claiming competence in the 
particular type of measurement at a particular time. 

� KC measurement results are identified by participant name. 

� KC measurement results are required to be expressed as an expected value, xi, within a 
fully evaluated 95% coverage uncertainty interval, U95(xi). 

The first of these considerations is not compatible with treating results as a random sample from 
an infinite population; the second tends to make participants much more critical of any data 
analysis; and the third enables definition of a meaningful mixture model probability density 
function (MM-PDF) for each measurement population. 

The MM-PDFs provide easily interpreted visual summaries of the {xi, U95(xi)} 
measurement kernels that complement and extend the utility of the familiar “dot and bar” xi 
±U95(xi) plots (Figure 1).  In addition to enabling visualization and discussion of metrologically 
interesting aspects of the data, MM-PDFs facilitate definition of robust estimates of location and 
dispersion that fully utilize all of the information provided by the kernels.  These MM-PDF-
based summary statistics are suitable for estimating 1) the expected performance of the majority 
of participants when some of the results are not in accord with the majority and 2) the true value 
of a measurand in a given material.  Whether these or any other form of robust or trimmed 
statistics are suitable for estimating KC Reference Values (KCRVs) and their associated 
uncertainties, u(KCRV), is a philosophical – not a numerical – issue. 
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Figure 1: Dot & Bar ( )(95 ii xUx ± ) Graph  
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What is a Mixture Model Probability Density? 

Every measurement expressed as an expected value, xi, and some defined uncertainty on xi, 
U(xi), defines a probability density within which the true value of the measurand is expected to 
lie with specified confidence.  While the shape of the density is seldom explicitly defined, in the 
absence of other information it is nearly universal practice to assume that the distribution is 
approximately normal (i.e., Gaussian) in form.  Given that ±2 standard deviations about the mean 
include about 95% of the area of a normal distribution, KC measurements reported as {xi, 
U95(xi)} can be considered to specify that the true value of the measurand is normally distributed 
about xi with standard deviation of U95(xi)/2.  That is, each KC measurement reported as {xi, 
U95(xi)} specifies a normal kernel density of unit area: N(xi, U95(xi)/2) (Figure 2). 

Displaying the individual kernels along the “bars” becomes ineffective (not to mention 
visually fussy) as the number of measurements displayed grows large.  They are more usefully 
displayed along the margin of the plot; i.e., as a kind of marginal distribution (Figure 3). 
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Figure 2: Interpretation of )(95 ii xUx ±  as N(xi, U95(xi)/2) Kernel Density 
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Figure 3: Visualization of Kernel Densities as Marginal Distributions 
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While the individual kernel densities summarize each of the measurements of a given KC, 
they do not themselves aggregate the measurements into a meaningful summary.  However, this 
can be achieved by additively mixing the individual kernel densities together; i.e., the mixture 

model probability density function: MM-PDF = ∑ ⎟
⎠
⎞

⎜
⎝
⎛

i

95

2
)(,N i

i
xUx  (Figure 4). 

Figure 4: Interpretation of Kernel Densities as a MM-PDF 
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The MM-PDF is not a new tool for analysis of interlaboratory data.  The conceptually related 
Kernel Density Estimation (KDE) techniques have long been used to provide smooth histograms 
and to define representative within-participant standard deviations for all values of given type 
reported in a given study [1].  KDE has also been advocated as an aid to detecting 
multimodalities within a dataset [2].  A computationally complex but explicit use of individual 
precision estimates for defining composite probability density functions has been used in the 
analysis of the results from several organic trace pollutant studies [3, 4].  Mixture models have 
recently been used with KC thermometry data [5, 6]. 

 
The MM-PDF is a useful interpretation tool in and of itself! 

While the MM-PDF does not use any information that is not implicit in the familiar “dot 
and bar” plots, it explicitly summarizes that information.  The weakly multiple-modes of the 
MM-PDF of the CCQM-K25 results (Figure 4) suggest that there may real metrological 
differences among the participants.  But do these differences arise from the measurement 
processes (the xi) or from the participant’s evaluations of the possible measurement uncertainty 
components (the U95(xi))? 

Figure 5 displays the MM-PDF for the data assuming that all of the uncertainties are as 
large as the largest actually reported.  If the participants reporting the smaller U95(xi) have under-
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estimated their uncertainties, the nearly symmetrical single-mode shape of the MM-PDF would 
suggest the absence of significant differences among the participant’s results.  In contrast, 
Figure 6 displays the MM-PDF for the data assuming that all of the uncertainties are as small as 
the smallest actually reported.  If the participants reporting the larger U95(xi) have over-estimated 
their uncertainties, the strongly multiple-modes would suggest that the participant’s methods do 
significantly differ.  No statistic can resolve the issue, but the MM-PDF can usefully guide 
metrological investigation into root causes. 

Figure 5: If all of the U95(xi) were as large as the largest reported value… 
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Figure 6: If all of the U95(xi) were as small as the smallest reported value… 
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The use of MM-PDFs defined using individualized kernel dispersions, whether based upon 
precision estimates from replicate measurements or upon uncritically-evaluated estimates of 
uncertainty, has been strongly criticized [2].  As Figures 4 to 6 demonstrate, inferring 
metrological consequence from the shape of the MM-PDF strongly depends upon the quality of 
the estimated uncertainties.  KCs appear to be the only current class of interlaboratory study that 
mandates reporting of measurement uncertainties of defined character: the U95(xi).  To the extent 
that a N(xi, U95(xi)/2) truly reflects the underlying states of knowledge of the location of the true 
value of the measurand, the MM-PDF truly summarizes KC results. 
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The MM-PDF is a useful tool for visually evaluating model distributions. 

While the MM-PDF usefully summarizes a given set of KC measurements, it is difficult to 
use outside of a graphical context.  Assuming that a set of results can plausibly be regarded as 
reflecting some underlying distribution of defined character, then it may be more efficient to 
summarize the results with the parameters required for the model distribution.  Again, in the 
absence of other information, it is common practice to assume that results are normally 
distributed about a true value, µ, with a characteristic standard deviation, σ.  Thus, the typical 
model is the normal kernel density N(µ,σ) (Figure 7). 

 
Figure 7: Modeling KC Results as a N(µ,σ) Kernel Density 
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Once an appropriate model is established, decision lines characteristic of the model may 
provide visual aids for evaluating KC results, such as: µ, µ σt s±  (the 95% confidence interval 

on the population of results where ts is the appropriate Student’s t statistic), and nσtµ s±  (the 
95% confidence interval on µ itself where n is the number of results) (Figure 8). 
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Figure 8: Model-Based Decision Lines:µ , σtµ s± , nσtµ s±  
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The inclusion of any part of an )(95 ii xUx ±  interval within the nσtµ s±  decision lines 
(as are all of those above) provides a visual evaluation of whether or not the particular result is in 
accord with the selected distributional model.  Those results completely outside these lines will 
be metrologically interesting, however aggravating that finding would be to the participant(s) 
involved. 

 
MM-PDF location and dispersion estimates utilize all of the information in a KC result. 

Since the vast majority of interlaboratory results do not include meaningful estimates of 
uncertainty, few summary analysis techniques have been developed that can utilize all of the 
information provided in a set of KC {xi, U95(xi)} results.  While not exhaustive, it is convenient 
to classify location and dispersion estimates into the following four groups: 

� those that ignore the U95(xi) (e.g., mean and standard deviation), 

� those that use the U95(xi) as weighting functions (e.g., uncertainty-weighted mean and 
standard deviation of the uncertainty-weighted mean), 

� those that bootstrap-resample from N(xi, U95(xi)/2) kernels, 

� those that characterize the MM-PDF built from the N(xi, U95(xi)/2) kernels. 

The following “make believe” (CCQM KC data rescaled for graphical convenience) are 
used to illustrate some of the major properties of these representative statistics from these 
groups, using analogies to physical measurement methods where practical. 
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Make Believe Example  
Value  Value

4.24 Mean  2.12 S & ExU
3.17 Uwt-mean  1.85 Suwt & ExU
4.23 MPwt-mean  2.01 SMPwt & ExU
3.88 Median  2.03 MADe & ExU
3.27 Shorth  1.82 IQR & ExU
3.95 MM-median 1.38 S(Shorth) & ExU
2.98 MM-sh/mid 2.00 S(MM-median)
2.89 MM-sh/med 1.83 S(MM-shorth)
2.03 MM-mode 2.51 S(BS-mean)
4.67 BS-mean 2.28 S(BS-SD)
4.01 H15 1.87 S(H15) & ExU
4.07 A15

1.38
2.03 2.51
4.67

Value
0.70 Pooled Uc
0.61 Median Uc
0.00 Zero

Value
8

0.70 1.0 Expected Unc
2.36
4.24 1.0 Location
2.12 1.0 Dispersion
5.01
1.77

50 %RSD

Minimum

Maximum
MaximumMinimum

Parameter
Number of {value, uncertainty} pairs

Expected Uncertainty
Parameter

Pooled Uc

Mean
S & ExU

~U95(location):  dispersion*ts/sqrt(N)

Student's t(1-0.95)

~U95(population):  dispersion*ts

Location Dispersion
Parameter Parameter

L1 L2 L3 L4 L5 L6 L7 L8
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Estimates of Location 

Estimates of location can be envisioned as identifying a particular value that, in some 
manner, balances two halves of the data.  The following location estimates are intended to be 
representative of the more commonly used of the “ignore” and “weight” classes listed above, as 
well as presenting the bootstrap and MM-PDF methods evaluated for this study.  Some of the 
definitions presented below require that none of the xi have exactly the same value; this is a 
limitation of the descriptions but not of the practical algorithms. 

Mean: Find X such that . 

This is the by far the most widely used estimate 
of location.  It can be regarded as the point of 
balance of a set of equally-weighted values on a 
beam.  The U95(xi) are not used in any way.  
Values have increasing influence on location as they deviate from the mean value.  The 
mean is thus not a robust estimate; i.e., a small change in a single outlier value can greatly 
change the location of the balance point. 

0X)(x
i

i =−∑

Uncertainty Weighted Mean, Uwt-mean: 

Find X such that 
( )∑ =

i
2

95

0
2)( ixU

−i X)(x

xi U95(xi)
L1 2.020 0.161
L2 2.470 0.836
L3 2.984 0.900
L4 3.692 0.450
L5 4.077 1.157
L6 5.042 0.386
L7 5.364 0.322
L8 8.257 0.772

. 

This is the most commonly used weighted 
location estimate.  It can be regarded as the point 
of balance of a set of values that have weight 
equivalent to the squared-reciprocal of the 
U95(xi).  Although it has been advocated for use 
in KC evaluations [7], small errors in 
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determination of the uncertainty may result in large changes in the estimated location.  The 
Uwt-mean is thus robust to neither outlier xi nor inappropriately small U95(xi). 

X = 4.23

Total Variance Weighted Means, MPwt-mean: 

Find X such that 
( )∑ =

+i
2
among

2
95

0
2)( sxU i

−i X)(x
. 

There are several variants of this estimate [8, 9]; 
only the original Mandel-Paule definition is 
included in this study.  These methods iteratively 
estimate X and samong, the among-participant standard deviation.  For datasets such as that 
displayed here where samong is relative large compared to the U95(xi), the resultant location 
is close to the mean; when samong is small (that is, the xi are in excellent accord), the 
location will be close to the Uwt-mean.  While protected from the influence of 
inappropriately small U95(xi), the MPwt-mean and its relatives are not robust to outlier xi. 

Winsorized Means: Find X such that 0X)(
i

i =−∑ z  

where zi = xi if |xi-X| ≤ α samong and zi = X+ α samong 
if |xi-X| > α samong and α is an empirical constant.  
The A15 estimate uses an externally established 
estimate of samong; the H15 (Huber’s Estimate 2) 
iteratively estimates X and samong.  While they do 
not use the U95(xi) in any way, these methods are 
robust to outlier xi and have been strongly recommended for use with interlaboratory 
results [10, 11].  These robust statistics are available in a (free!) spreadsheet add-in [12]. 

X + αSX - αS

X = 4.01

X = 4.71

Bootstrap Mean, BS-mean: Find X such that 

0d
)PDF(

X)(
2 =

−
∫
∞−

x
x

x∞

.  In practice, this is 

evaluated as the mean of a large number of 
bootstrap-resampled x drawn from the MM-
PDF [13].  While not infrequently used in the 
evaluation of multivariate models [14, 15], 
these bootstrap techniques do not appear to 
have been used in an interlaboratory context.  
The BS-mean fully utilizes the U95(xi) and is 
robust to inappropriately small U95(xi); however, it is somewhat sensitive to 
inappropriately large U95(xi), particularly when associated with an outlier xi. 

XRXL

X = 3.88

Median: Find XL and XR, XL ≤ XR, such that 
.  When XL ≠ XR (i.e., when there 

are an even number of data), the median is 

conventionally specified as 

∑∑ = 11
≥∀≤∀ LiRi XxXx

2
X

XX RL +
= .  The 

median is the most commonly used robust 



Duewer: A Robust Approach to KCRVs and Uncertainties 10 

location estimate.  It does not utilize U95(xi), but it is robust to a moderate fraction of outlier 
xi.  The median has been proposed as a method for determining KCRVs [16, 17]. 

X = 3.27

XL XRShorth: Find XL and XR, XL ≤ XR, such that 
 and XR – XL is 

minimized.  The shorth (shortest half) is 

∑∑∑ += 111
>∀<∀≤≤∀ RiLiRiL XxXxXxX

2
X =

XX RL + .  This univariate analogue of the 

multivariate minimum volume ellipsoid estimator 
[18] is similar to the median in that it divides the 
number of data into two equal parts – but “interior” vs. “exterior” rather then “left” vs. 
“right”.  Conventions for treating odd numbers of data have been established.  Like the 
median, it does not utilize U95(xi) in any way and is robust to a moderate fraction of outlier 
xi.  Since the distance between XR and XL is much larger than in the case of the median, the 
location of the half-width X is less influenced by the detailed distribution of the interior or 
“inlier” xi.  When the separation between the ordered data, xi+1 – xi, is the same for many of 
the inliers, there may exist multiple – equally valid – shorth estimates.  This indeterminacy 
can, in principle, be avoided by combining all equivalent shorths.  The major utility of the 
shorth is that it does not require that the data be symmetrically distributed about the 
estimated location and so may be more appropriate then the median when there are strong 
scientific grounds (e.g., asymmetrical biases such as extraction or degradation) for 
believing that the reported values can only asymptotically approach the true value of the 
measurand rather then being symmetrically distributed about the true value.  The shorth has 
been used in the evaluation of interlaboratory studies involving high-level metrology [19]. 

Mixture Model Median, MM-median: Find X such 

that .  This estimate is 

closely related to the median, but proceeds by 
dividing the MM-PDF by area rather than the xi 
by number.  Like the median, it is robust to 
outlier xi; unlike the median, it uses information 
provided in the U95(xi).  This estimate appears to 
be relatively novel to both the metrological and 
statistical literature. 

∫∫
∞−

=
X

)dPDF()dPDF( xxxx

X = 3.95

∞X

XRXL

X = 2.98

Mixture Model Shorth, MM-shorth: Find XL and XR, XL 
≤ XR, such that 

 and that 

minimize XR – XL.  Like the MM-median, this is 
closely related to the shorth.  It is robust to outlier 
xi and uses information provided in the U95(xi).  It 
shares the major strength of the shorth in that it 
does not require the exterior density to be 

∫ ∫∫
∞

+=
RL - XX

)dPDF()dPDF()dPDF( xxxxxx
∞LR XX
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symmetrically distributed.  It also shares a tendency to have multiple equivalent values 
when the MM-PDF has two or more modes of equal area.  Two variants for combining XL 
and XR into a single location estimate have been evaluated.  In direct analogy to the shorth, 

MM-sh/mid is defined as 
2

X
XX RL +

= ; to more fully exploit the detailed shape of the 

interior density of the MM-PDF, the MM-sh/med is the X such that 

.  Like the MM-median, both of these estimates appear to be 

relatively novel. 

∫∫ =
L XX

)dPDF()dPDF( xxxx
RXX

X = 2.03

Mixture Model Mode, MM-mode: Find X where 
MM-PDF(x) is largest.  While the mode has been 
advocated for use in the evaluation of interlaboratory 
data [20] and the MM-mode uses information 
provided in the U95(xi), as with the Uwt-mean this 
estimate is sensitive to small outlier U95(xi).  If it has 
a strength beyond its simplicity, it is that – like the 
shorth and MM-shorth – it does not require that the 
density be symmetrically distributed about the 
dividing location. 

 
Relationships Among the Location Estimates 

 
Table 1: Some Characteristics of Location Estimates 

 
  Literature Uses Robust to outlier  Assumes 

Estimate  Characterized U95(xi) xi U95(xi)  Symmetry
Mean  Yes No No   Yes 

Uwt-mean  Yes Yes No No  No 
MPwt-mean  Yes Yes No Yes  No 

A15  Yes No Yes   Yes 
H15  Yes No Yes   Yes 

BS-mean  No Yes No Yes  Yes 
Median  Yes No Yes   Yes 
Shorth  Yes No Yes   No 

MM-median  No Yes Yes Yes  Yes 
MM-sh/mid  No Yes Yes Yes  No 
MM-sh/med  No Yes Yes Yes  No 
MM-mode  No Yes Yes No  No 
 
Table 1 summarizes some characteristics of interest to the determination of KCRV for the 

various location estimates discussed above.  However, neither these properties nor the method of 
computation indicate the kind or extent of functional relationships, if any, among the summary 
location values that they yield.  The existence of such relationships is suggested from cluster 
analysis [21] of normalized differences from the KCRV, zi = (xi – KCRV)/KCRV, for some 
published KC data (Figure 9). 



Duewer: A Robust Approach to KCRVs and Uncertainties 12 

There appear to be three groups of estimates that are closely related:  

� mean, MPwt-mean, and BS-mean.  These estimates are not robust to xi outliers and 
assume that the data are symmetrically distributed about a balance point. 

� median, MM-median, A15, and H15.  These estimates are robust to xi outliers and 
assume that the data are symmetrically distributed about a balance point. 

� MM-sh/mid, -sh/med, and –mode.  These estimates are robust to xi outliers and do not 
assume that the data are symmetrically distributed about a balance point. 

 
Figure 9: Relationships Among Location Estimates 

for 21 Organic Chemical Measurands Measured in CCQM KCs. 

Mean

Uwt-mean

MPwt-mean

Median
Shorth

MM-median

MM-sh/mid
MM-sh/med

MM-mode

BS-mean

H15
A15

0 0.05 0.1 0.15 0.2

Dissimilarity Index

not x i  robust, symmetric

asymmetric, unstable?

robust, symmetric

x i  robust, asymmetric

)
 

(The Dissimilarity Index is ( 212 jkR−  where Rjk is Pearson’s correlation between variables j and k. 

The larger the Dissimilarity Index, the less similar the behavior of the variables.) 
 

The remaining, fairly weak, grouping of the shorth and the Uwt-mean is not as easily 
interpreted, although neither estimate assumes that the (un-weighted) data are symmetrically 
distributed about a balance point.  It is interesting that the shorth and the MM-shorth estimates 
are not at all closely related, unlike the median and MM-median.  It may be that the shorth and 
Uwt-mean provide relatively unstable location estimates for these characteristically few number-
of-data studies. 

 
Modeling Measurement Dispersion: Among, Within, and Total 

There are two sources of dispersion in KC data: that resulting from differences among the 
xi, samong, and that reflecting the participants’ measurement uncertainty, swithin.  Estimates based 
on N(xi, U95(xi)/2) kernels “see” the total dispersion, stotal = 22

withinamong ss + .  Estimates that 
ignore the U95(xi) or that use them as weights “see” only samong; these need to be augmented with 
an independent estimate of swithin before they can be compared with the others.  The usual 
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estimate for swithin is the “pooled” (average of the sum-of-the-squared) uncertainty estimates, 

( )∑ 2
95 21

i
i )x(U

n

2

.  Other estimates, such as the median U95(xi)/2, may be appropriate when 

there are very large outlier U95(xi). 

Because standard deviations add in quadrature, only when swithin / samong > 0.5 (that is, the 
spread among the xi is no more than twice the average spread of the stated uncertainties) will stotal 
be much (10%) larger than samong.  Figure 10 displays highly concordant KC results modeled as 
N(µ, samong); Figure 11 displays the same data modeled as N(µ, stotal).  Comparison with the 
empirical MM-PDF suggests that the N(µ, samong) model indeed underestimates the total 
dispersion.  (The Figures also suggest that most participants here either overestimated their 
U95(xi) or use procedures that have very similar biases.) 

Figure 10: Highly Concordant KC Results Modeled as a N(µ, samong) Distribution 
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Figure 11: Highly Concordant KC Results Modeled as a N(µ, stotal) Distribution 

CCQM-K01a: CO in N2, 60 µmol/mol nominal
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Estimates of Dispersion 

Dispersion estimates are less cogently envisioned in analogy to physical measurements as 
they address the spread of the data about a specified location rather then a set of fixed locations.  
Some of the estimates can be represented as a balance point of square deviations,; there is no 
fixed rank order of the original data nor fixed highest value.  The two “beam balance” cartoons 
below display the locations of the (xi – X)2, using the same “make believe data as used for the 
location estimates, as green diamonds; the statistic of interest is the square-root of the balance 
point.  Other estimates can be represented as either a “pan balance” division similar to that 
presented for the median or as length measurements; in both cases, the statistic of interest must 
be scaled to give an appropriate estimate of dispersion for the N(µ,σ) model. 

S2 = 4.00

Standard Deviation, S: ( )∑ −
−

n

i
ix

n
2X

1
1 . 

The standard deviation (here specified as the 
standard deviation of a sample since one degree-
of-freedom is consumed in estimating the mean) 
is by far the most common dispersion estimate.  The U95(xi) are not used in any way.  Large 
squared deviations have great influence, making S very much less robust than the mean.  
The estimate assumes that the xi are symmetrically distributed about the mean. 

S2= 2.94

Uncertainty Weighted Standard Deviation, Suwt: 

( ) ( ) ( )
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⎟
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⎜
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This statistic is typically computed in the form of a standard deviation of weighted mean, a 
result of the conventional scaling of the weights such that their sum is 1.0.  The standard 
deviation of the population results is recovered by scaling the weights such that their sum is 
1/n.  While the U95(xi) are used, they only influence the samong balance point and do not add 
additional dispersion.  Like the Uwt-mean, Suwt is robust to neither outlier xi nor 
inappropriately small U95(xi).  Because of the variable weighting, the xi are not necessarily 
assumed to be symmetrically distributed about the mean. 

Total Variance Weighted Standard Deviations, SMPwt:  As with the related location statistics, 
there are several variants of this estimate [8, 9].  Only the original Mandel-Paule definition 
is included in this study, modified to yield a standard deviation rather than a standard 
deviation of the MPwt-mean.  There is no closed-form formula; the location and dispersion 
statistics are calculated by iteration.  For datasets where samong is large compared to swithin 
SMPwt will be similar to S; when samong is small compared to swithin SMPwt will be similar 
to Suwt.  In neither case does the use of the U95(xi) as part of the weighting function add 
addition dispersion.  While protected from the influence of inappropriately small U95(xi), 
the SMPwt and its relatives are not robust to outlier xi. 

Winsorized Standard Deviation, S(H15):  This statistic is iteratively calculated in conjunction 
with the H15 location estimate.  It is robust to outlier xi.  In the absence of outlier xi it is 
identical to S; it does not use the U95(xi).  The estimate assumes that the xi are 
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symmetrically distributed about the mean.  It has been strongly recommended for use with 
interlaboratory results [11].  This statistic is available as an spreadsheet add-in [12]. 

XRXL

S = 1.29 / 0.6745

Bootstrap Standard Deviations.  Two variant statistics that are readily calculated from the 
bootstrap resampling data used for the BS-mean have been studied.  S(BS-SD) is 

MS
M

m
m∑ 2 , the pooled standard deviation of a large number, M, of standard deviations of 

bootstrap-resampled data drawn from the MM-PDF distribution, Sm.  S(BS-mean) is 

( ) ( )∑ −−
M

m
m MXM 1X 2 , the standard deviation of a large number of BS-mean 

estimates, Xm, expanded to estimate the standard deviation of the population rather than the 
standard deviation of the BS-mean.  Both estimate stotal.  As with the BS-mean, neither is 
robust to outlier xi nor large U95(xi).  Both assume that the data are symmetrically 
distributed. 

Q3Q1

 
S = 2.27 / 1.348

Median Absolute Deviation About the Median, MADe.  
The MADe is calculated in the same manner as the 
median but uses the absolute deviations from the 
median rather than the xi, MEDIAN(|xi-X|) / 0.6745.   
The constant 0.6745 is based upon relationships 
between absolute deviations and the standard 
deviation for normal distributions [16].  The MADe 
thus uses the median of the |xi-X| to estimate the 
distribution the xi would have if the xi were all true members of single normal distribution.  
The MADe does not use the U95(xi) and only estimates samong.  It assumes that the xi are 
symmetrically distributed about the median. 

Interquartile Range-based Standard Deviation, IQR.  The 
IQR is calculated from the span of the central 50% 
of the xi, {Q3(xi)-Q1(xi)} / 1.348, where Q1 is the 
location of the first quartile and Q3 is the location of 
the third quartile of the xi.  The constant 1.348 is 
based upon the relationship between the spans 
about the center of a normal distribution that 
include 68% and 50% of the distribution [22].  The IQR thus uses the span of the central 
50% of the data to estimate the distribution the xi would have if the xi were all true 
members of single normal distribution.  The IQR does not use the U95(xi) and only 
estimates samong.  It assumes that the xi are symmetrically distributed about the median. 

Shorth-based Standard Deviation, S(shorth).  The 
S(Shorth) is calculated in the same manner as the 
IQR, replacing the span of the interquartile range 
with the span of the shortest half: (XR-XL) / 1.348 
[22].  The S(shorth) uses the span of the most 
compact 50% of the data to estimates the 
distribution the xi would have if the xi were all true 
members of single normal distribution.  The 

XRXL

S = 1.61 / 1.348
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S(shorth) does not use the U95(xi) and only estimates samong.  It does not assume that the xi 
are symmetrically distributed about a central location. 

Q3Q1

S = 2.70 / 1.348

MM-median-based Standard Deviation, S(MM-median).  
The S(MM-median) is calculated in the same 
manner as the IQR, replacing the span of the 
interquartile range with the span of the central 50% 
of the MM-PDF density: (Q3(MM-PDF(xi))-
Q1(MM-PDF(xi)) / 1.348 [22].  The S(MM-median) 
thus estimates the distribution the xi would have if 
the xi were all true members of single normal 
distribution.  The S(MM-median) uses the U95(xi).  
It estimates stotal and assumes that the xi are 
symmetrically distributed about a central location. 

 
MM-shorth-based Standard Deviation, 

S(MM-shorth).  The S(MM-shorth) is 
calculated in the same manner as the S(shorth), 
replacing the span of the shortest-half with the 
span of the most compact 50% of the MM-PDF 
density: (XR - XL) / 1.348 [22]..  The S(MM-
shorth) thus estimates the distribution the xi 
would have if the xi were all true members of 
single normal distribution.  The S(MM-shorth) 
uses the U95(xi).  It estimates stotal and does not 
assume that the xi are symmetrically distributed 
about a central location. 

XRXL

S = 2.48 / 1.348

 
Relationships Among the Dispersion Estimates 

Table 2: Some Characteristics of Dispersion Estimates 
 

  Literature Uses Robust to outlier  Assumes 
Estimate  Characterized U95(xi) xi U95(xi)  Symmetry

S  Yes No No   Yes 
Suwt  Yes Yes No No  No 

SMPwt  Yes Yes No Yes  No 
S(H15)  Yes No Yes   Yes 

S(BS-mean)  No Yes No No  Yes 
S(BS-SD)  No Yes No Yes  Yes 

MADe  Yes No Yes   No 
IQR  Yes No Yes   No 

S(shorth)  Yes? Yes Yes Yes  No 
S(MM-median)  No Yes Yes Yes  Yes 
S(MM-shorth)  No Yes Yes Yes  No 
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Table 2 summarizes some characteristics of interest to the determination of u(KCRV) with 
the various dispersion estimates discussed above.  As with the location estimates, neither these 
properties nor the method of computation indicate the kind or extent of functional relationships, 
if any, among the summary dispersion values that they yield.  The existence of such relationships 
is suggested from cluster analysis [21] of normalized differences from the u(KCRV), 
zi = (S-u(KCRV))/KCRV, for some published KC data (Figure 12).  Once again, there appear to 
be three groups of estimates that are closely related (statistics augmented with swithin are denoted 
with “+” concatenated to the code name):  

� S+, S(BS-SD), SMPwt+, S(BS-mean), and (perhaps), Suwt+.  These estimates are not 
robust to xi outliers.  The close similarity of the augmented S to the bootstrap S(BS-SD) 
suggests that the augmentation process is appropriate. 

� IQR+, S(H15)+, and S(MM-median).  These estimates are robust to xi outliers and 
assume that the data are symmetrically distributed about a balance point. 

� MADe+, S(MM-shorth), and S(shorth)+.  These estimates are robust to xi outliers and 
do not assume that the data are symmetrically distributed about a balance point. 

 
Figure 12: Relationships Among Dispersion Estimates 

for 21 Organic Chemical Measurands Measured in CCQM KCs. 

S(H15)+

S(BS-SD)

S(BS-mean)

S(MM-shorth)

S(MM-median)

S(Shorth)+

IQR+

MADe+

SMPwt+

Suwt+

S+

0 0.05 0.1 0.15

Dissimilarity Index

not x i  robust

x i  robust, symmetric

x i  robust, asymmetric

 
Weighted Statistics Make an Unsupported Assumption 

All statistics that use the U95(xi) as part of a weighting function presuppose the existence of 
a strong positive relationship between the magnitude of the uncertainty, U95(xi), and the 
magnitude of the bias of the xi from the true value, |xi-X|.  If there is no such relationship, at least 
for the measurements having the smaller U95(xi), such weighting has little or no practical utility.  
Figure 13 empirically explores this for the current CCQM KC results by plotting the relative 
uncertainties, (U95(xi)/2)/stotal, as a function of the associated relative biases, |xi-X|/stotal.  The 
MM-median and S(MM-shorth) have been used to estimate the X and stotal parameters. 
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Figure 13: Relative Uncertainties of CCQM KC Results as a Function of Relative Bias. 
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The red lines approximate the percentage of the results that are between the line and the 
origin as a function of the relative bias.  If there were no relationship between the relative 
uncertainties and biases, all lines would be horizontal; if there were a strongly positive 
relationship, the 25%, 50%, and 75% lines would be expected to have significant positive slope.  
Any functional relationship that exists in these data is not particularly strong.  

 
What Are the Best Statistics for Evaluating KC Results?  It depends! 

Before the most appropriate statistics for establishing KCRV and u(KCRV) can be 
identified, the intended use for the summary information must be clearly identified.  There are at 
least three potential uses of KC information: 

� Inference of the true value of the measurand in a material.  While more appropriate for 
pilot studies and during the validation stages of KC studies, there has been forceful 
arguments on the need for a KCRV to represent the measurand true value [5].  If a true 
value is to be inferred from KC results, summary statistics that are robust to outliers 
and include all known sources of dispersion are required.  If there are no metrological 
grounds for assuming asymmetric distribution of bias, the {median, MADe+} and 
{MM-median, S(MM-shorth)} appear to provide similar results.  If the biases are 
known to be strongly asymmetrical, the {MM-shorth, S(MM-shorth)} are more reliable 
then the {shorth, S(shorth)} with small data sets. 

� Inference of the performance characteristics of metrology used for a given measurand 
as practiced by NMIs for establishing appropriate traceability.  While not an explicit 
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goal, KC data implicitly provide guidance on the limits of current metrological practice 
for measurands of considerable importance.  Characterizing “best case” metrology also 
requires summary statistics that are robust to outliers but may not require inclusion of 
the swithin dispersion component.  Any of the robust location statistics are suitable.  The 
MADe appears most appropriate if the samong dispersion is of primary interest; the 
MADe+ and S(MM-shorth) are appropriate when stotal dispersion is of primary interest. 

� Description of the performance of all official participants in a KC.  To truly describe all 
results, no data should be excluded nor differentially weighted and all sources of 
dispersion should be included.  The {BS-mean, S(BS-SD)} may provide the most 
complete evaluation of KC results, but they are not yet well characterized nor 
established in the literature.  The {mean, S+} are appropriate and have the great 
advantage of being well established. 

 
Example analyses for some combinations of location and dispersion estimates are located 

at the end of the References. 
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{Mean, S} 
 

CCQM-K02: Cd in natural water, 83 nmol/kg nominal  
Value  Value

83.5 Mean  0.8 S & ExU
82.5 Uwt-mean  0.4 Suwt & ExU
82.9 MPwt-mean  0.3 SMPwt & ExU
83.4 Median  0.7 MADe & ExU
83.2 Shorth  0.7 IQR & ExU
83.3 MM-median 0.7 S(Shorth) & ExU
82.9 MM-sh/mid 1.3 S(MM-median)
82.9 MM-sh/med 1.0 S(MM-shorth)
82.4 MM-mode 1.4 S(BS-mean)
83.6 BS-mean 1.4 S(BS-SD)
83.5 H15 0.9 S(H15) & ExU
83.5 A15

0.3
82.4 1.4
83.6

83.5 Value
0.8 1.1 Pooled Uc

1.0 Median Uc
0.0 Zero

Value
9

0.0 3.0 Expected Unc
2.3

83.5 1.0 Location
0.8 1.0 Dispersion
1.9
0.6
1.0 %RSD

Minimum

Maximum
MaximumMinimum

Parameter
Number of {value, uncertainty} pairs

Expected Uncertainty
Parameter

Zero

Mean
S & ExU

~U95(location):  dispersion*ts/sqrt(N)

Student's t(1-0.95)

KCRV
KCRU

~U95(population):  dispersion*ts

Location Dispersion
Parameter Parameter
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{Mean, S+} 
 

CCQM-K02: Cd in natural water, 83 nmol/kg nominal  
Value  Value

83.5 Mean  1.3 S & ExU
82.5 Uwt-mean  1.1 Suwt & ExU
82.9 MPwt-mean  1.1 SMPwt & ExU
83.4 Median  1.3 MADe & ExU
83.2 Shorth  1.3 IQR & ExU
83.3 MM-median 1.3 S(Shorth) & ExU
82.9 MM-sh/mid 1.3 S(MM-median)
82.9 MM-sh/med 1.0 S(MM-shorth)
82.4 MM-mode 1.6 S(BS-mean)
83.6 BS-mean 1.5 S(BS-SD)
83.5 H15 1.4 S(H15) & ExU
83.5 A15

1.0
82.4 1.6
83.6

83.5 Value
0.8 1.1 Pooled Uc

1.0 Median Uc
0.0 Zero

Value
9

1.1 1.0 Expected Unc
2.3

83.5 1.0 Location
1.3 1.0 Dispersion
3.1
1.0
1.6 %RSD

Minimum

Maximum
MaximumMinimum

Parameter
Number of {value, uncertainty} pairs

Expected Uncertainty
Parameter

Pooled Uc

Mean
S & ExU

~U95(location):  dispersion*ts/sqrt(N)

Student's t(1-0.95)

KCRV
KCRU

~U95(population):  dispersion*ts

Location Dispersion
Parameter Parameter
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{BS-mean, S(BS-mean)} 
 

CCQM-K02: Cd in natural water, 83 nmol/kg nominal  
Value  Value

83.5 Mean  0.8 S & ExU
82.5 Uwt-mean  0.4 Suwt & ExU
82.9 MPwt-mean  0.3 SMPwt & ExU
83.4 Median  0.7 MADe & ExU
83.2 Shorth  0.7 IQR & ExU
83.3 MM-median 0.7 S(Shorth) & ExU
82.9 MM-sh/mid 1.3 S(MM-median)
82.9 MM-sh/med 1.0 S(MM-shorth)
82.4 MM-mode 1.6 S(BS-mean)
83.6 BS-mean 1.5 S(BS-SD)
83.5 H15 0.9 S(H15) & ExU
83.5 A15

0.3
82.4 1.6
83.6

83.5 Value
0.8 1.1 Pooled Uc

1.0 Median Uc
0.0 Zero

Value
9

0.0 3.0 Expected Unc
2.3

83.6 ## Location
1.6 9.0 Dispersion
3.7
1.2
1.9 %RSD

Minimum

Maximum
MaximumMinimum

Parameter
Number of {value, uncertainty} pairs

Expected Uncertainty
Parameter

Zero

BS-mean
S(BS-mean)

~U95(location):  dispersion*ts/sqrt(N)

Student's t(1-0.95)

KCRV
KCRU

~U95(population):  dispersion*ts

Location Dispersion
Parameter Parameter
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{Uwt-mean, Suwt} 
 

CCQM-K02: Cd in natural water, 83 nmol/kg nominal  
Value  Value

83.5 Mean  0.8 S & ExU
82.5 Uwt-mean  0.4 Suwt & ExU
82.9 MPwt-mean  0.3 SMPwt & ExU
83.4 Median  0.7 MADe & ExU
83.2 Shorth  0.7 IQR & ExU
83.3 MM-median 0.7 S(Shorth) & ExU
82.9 MM-sh/mid 1.3 S(MM-median)
82.9 MM-sh/med 1.0 S(MM-shorth)
82.4 MM-mode 1.6 S(BS-mean)
83.6 BS-mean 1.5 S(BS-SD)
83.5 H15 0.9 S(H15) & ExU
83.5 A15

0.3
82.4 1.6
83.6

83.5 Value
0.8 1.1 Pooled Uc

1.0 Median Uc
0.0 Zero

Value
9

0.0 3.0 Expected Unc
2.3

82.5 2.0 Location
0.4 2.0 Dispersion
0.9
0.3
0.5 %RSD

Minimum

Maximum
MaximumMinimum

Parameter
Number of {value, uncertainty} pairs

Expected Uncertainty
Parameter

Zero

Uwt-mean
Suwt & ExU

~U95(location):  dispersion*ts/sqrt(N)

Student's t(1-0.95)

KCRV
KCRU

~U95(population):  dispersion*ts

Location Dispersion
Parameter Parameter
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{MPwt-mean, SMPwt} 
 

CCQM-K02: Cd in natural water, 83 nmol/kg nominal  
Value  Value

83.5 Mean  0.8 S & ExU
82.5 Uwt-mean  0.4 Suwt & ExU
82.9 MPwt-mean  0.3 SMPwt & ExU
83.4 Median  0.7 MADe & ExU
83.2 Shorth  0.7 IQR & ExU
83.3 MM-median 0.7 S(Shorth) & ExU
82.9 MM-sh/mid 1.3 S(MM-median)
82.9 MM-sh/med 1.0 S(MM-shorth)
82.4 MM-mode 1.6 S(BS-mean)
83.6 BS-mean 1.5 S(BS-SD)
83.5 H15 0.9 S(H15) & ExU
83.5 A15

0.3
82.4 1.6
83.6

83.5 Value
0.8 1.1 Pooled Uc

1.0 Median Uc
0.0 Zero

Value
9

0.0 3.0 Expected Unc
2.3

82.9 3.0 Location
0.3 3.0 Dispersion
0.7
0.2
0.4 %RSD

Minimum

Maximum
MaximumMinimum

Parameter
Number of {value, uncertainty} pairs

Expected Uncertainty
Parameter

Zero

MPwt-mean
SMPwt & ExU

~U95(location):  dispersion*ts/sqrt(N)

Student's t(1-0.95)
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KCRU

~U95(population):  dispersion*ts
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{MM-mode, S(MM-shorth)} 
 

CCQM-K02: Cd in natural water, 83 nmol/kg nominal  
Value  Value

83.5 Mean  0.8 S & ExU
82.5 Uwt-mean  0.4 Suwt & ExU
82.9 MPwt-mean  0.3 SMPwt & ExU
83.4 Median  0.7 MADe & ExU
83.2 Shorth  0.7 IQR & ExU
83.3 MM-median 0.7 S(Shorth) & ExU
82.9 MM-sh/mid 1.3 S(MM-median)
82.9 MM-sh/med 1.0 S(MM-shorth)
82.4 MM-mode 1.6 S(BS-mean)
83.6 BS-mean 1.5 S(BS-SD)
83.5 H15 0.9 S(H15) & ExU
83.5 A15

0.3
82.4 1.6
83.6

83.5 Value
0.8 1.1 Pooled Uc

1.0 Median Uc
0.0 Zero

Value
9

0.0 3.0 Expected Unc
2.3

82.4 9.0 Location
1.0 8.0 Dispersion
2.4
0.8
1.2 %RSD

Minimum

Maximum
MaximumMinimum

Parameter
Number of {value, uncertainty} pairs

Expected Uncertainty
Parameter

Zero

MM-mode
S(MM-shorth)

~U95(location):  dispersion*ts/sqrt(N)

Student's t(1-0.95)

KCRV
KCRU

~U95(population):  dispersion*ts

Location Dispersion
Parameter Parameter
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{Median, MADe} 
 

CCQM-K02: Cd in natural water, 83 nmol/kg nominal  
Value  Value

83.5 Mean  0.8 S & ExU
82.5 Uwt-mean  0.4 Suwt & ExU
82.9 MPwt-mean  0.3 SMPwt & ExU
83.4 Median  0.7 MADe & ExU
83.2 Shorth  0.7 IQR & ExU
83.3 MM-median 0.7 S(Shorth) & ExU
82.9 MM-sh/mid 1.3 S(MM-median)
82.9 MM-sh/med 1.0 S(MM-shorth)
82.4 MM-mode 1.6 S(BS-mean)
83.6 BS-mean 1.5 S(BS-SD)
83.5 H15 0.9 S(H15) & ExU
83.5 A15

0.3
82.4 1.6
83.6

83.5 Value
0.8 1.1 Pooled Uc

1.0 Median Uc
0.0 Zero

Value
9

0.0 3.0 Expected Unc
2.3

83.4 4.0 Location
0.7 4.0 Dispersion
1.7
0.6
0.9 %RSD

Minimum

Maximum
MaximumMinimum

Parameter
Number of {value, uncertainty} pairs

Expected Uncertainty
Parameter

Zero

Median
MADe & ExU

~U95(location):  dispersion*ts/sqrt(N)

Student's t(1-0.95)

KCRV
KCRU

~U95(population):  dispersion*ts

Location Dispersion
Parameter Parameter
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{Median, MADe+} 
 

CCQM-K02: Cd in natural water, 83 nmol/kg nominal  
Value  Value

83.5 Mean  1.3 S & ExU
82.5 Uwt-mean  1.1 Suwt & ExU
82.9 MPwt-mean  1.1 SMPwt & ExU
83.4 Median  1.3 MADe & ExU
83.2 Shorth  1.3 IQR & ExU
83.3 MM-median 1.3 S(Shorth) & ExU
82.9 MM-sh/mid 1.3 S(MM-median)
82.9 MM-sh/med 1.0 S(MM-shorth)
82.4 MM-mode 1.6 S(BS-mean)
83.6 BS-mean 1.5 S(BS-SD)
83.5 H15 1.4 S(H15) & ExU
83.5 A15

1.0
82.4 1.6
83.6

83.5 Value
0.8 1.1 Pooled Uc

1.0 Median Uc
0.0 Zero

Value
9

1.1 1.0 Expected Unc
2.3

83.4 4.0 Location
1.3 4.0 Dispersion
3.0
1.0
1.5 %RSD

Minimum

Maximum
MaximumMinimum

Parameter
Number of {value, uncertainty} pairs

Expected Uncertainty
Parameter

Pooled Uc

Median
MADe & ExU

~U95(location):  dispersion*ts/sqrt(N)

Student's t(1-0.95)

KCRV
KCRU

~U95(population):  dispersion*ts

Location Dispersion
Parameter Parameter
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{MM-median, S(MM-median)} 
 

CCQM-K02: Cd in natural water, 83 nmol/kg nominal  
Value  Value

83.5 Mean  0.8 S & ExU
82.5 Uwt-mean  0.4 Suwt & ExU
82.9 MPwt-mean  0.3 SMPwt & ExU
83.4 Median  0.7 MADe & ExU
83.2 Shorth  0.7 IQR & ExU
83.3 MM-median 0.7 S(Shorth) & ExU
82.9 MM-sh/mid 1.3 S(MM-median)
82.9 MM-sh/med 1.0 S(MM-shorth)
82.4 MM-mode 1.6 S(BS-mean)
83.6 BS-mean 1.5 S(BS-SD)
83.5 H15 0.9 S(H15) & ExU
83.5 A15

0.3
82.4 1.6
83.6

83.5 Value
0.8 1.1 Pooled Uc

1.0 Median Uc
0.0 Zero

Value
9

0.0 3.0 Expected Unc
2.3

83.3 6.0 Location
1.3 7.0 Dispersion
2.9
1.0
1.5 %RSD

Minimum

Maximum
MaximumMinimum

Parameter
Number of {value, uncertainty} pairs

Expected Uncertainty
Parameter

Zero

MM-median
S(MM-median)

~U95(location):  dispersion*ts/sqrt(N)

Student's t(1-0.95)

KCRV
KCRU

~U95(population):  dispersion*ts

Location Dispersion
Parameter Parameter
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{MM-shorth, S(MM-shorth)} 
 

CCQM-K02: Cd in natural water, 83 nmol/kg nominal  
Value  Value

83.5 Mean  0.8 S & ExU
82.5 Uwt-mean  0.4 Suwt & ExU
82.9 MPwt-mean  0.3 SMPwt & ExU
83.4 Median  0.7 MADe & ExU
83.2 Shorth  0.7 IQR & ExU
83.3 MM-median 0.7 S(Shorth) & ExU
82.9 MM-sh/mid 1.3 S(MM-median)
82.9 MM-sh/med 1.0 S(MM-shorth)
82.4 MM-mode 1.6 S(BS-mean)
83.6 BS-mean 1.5 S(BS-SD)
83.5 H15 0.9 S(H15) & ExU
83.5 A15

0.3
82.4 1.6
83.6

83.5 Value
0.8 1.1 Pooled Uc

1.0 Median Uc
0.0 Zero

Value
9

0.0 3.0 Expected Unc
2.3

82.9 8.0 Location
1.0 8.0 Dispersion
2.4
0.8
1.2 %RSD

Minimum

Maximum
MaximumMinimum

Parameter
Number of {value, uncertainty} pairs

Expected Uncertainty
Parameter

Zero

MM-sh/med
S(MM-shorth)

~U95(location):  dispersion*ts/sqrt(N)

Student's t(1-0.95)

KCRV
KCRU

~U95(population):  dispersion*ts

Location Dispersion
Parameter Parameter
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