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Outline 

• Bayesian analysis of flow meter calibration problem 

– An example of a normal linear regression problem 

 

• Treatment of different prior knowledge 

– About flow meter calibration curve 

– About repeatability of flow meter 

 

• Comparison with classical ordinary least squares (OLS) approach 
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Background 
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• Flow meter measures the volume of fluid flowing through the meter per 
unit of time, e.g. reported in L min-1 

 

• High-quality meter will have an electrical pulse output such that each 
pulse corresponds to a fixed volume flowing through the meter 
 

• Frequency of the pulse output is proportional to flow rate q, and the 
proportionality constant is the K-factor k 
 

• A calibration involves determining the K-factor for several known flow 
rates, and fitting a curve to the calibration data 
 

• That calibration curve is used to provide an estimate of the K-factor at any 
flow rate within the measurement range of the device 



Prior knowledge regarding flow 
meter calibration 

• Specified K-factor by manufacturer (constant) 

 -> correct within 1 % 

 

• Calibration curve of previous calibration 

 -> correct within 0.1 % 

 

• Typical variation in curve 

 -> maximum and minimum values differ by less than 0.2 % 

 

• Information on repeatability specified by manufacturer 

 -> estimate of 0.025 % with degree of belief ν0 
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Data and some of the prior knowledge 
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Statistical model 
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•  Calibration data 
 

  (qi, ki), i = 1, ..., n 
 
•  Calibration curve 
 

  fβ(q) = β1 + β2 / q + β3 q + β4 q
2 + β5 q

3 

 
•  Statistical model 
 

  ki = fβ(qi) + εi,  εi ~ N(0, σ2) 

 
•  Normal linear regression problem with parameters β and σ2 



Bayesian analysis 

Prior knowledge 
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Data &  

statistical model 

 

Posterior knowledge 
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theorem 



Prior distribution for curve 
parameters β  
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Prior distribution for repeatability σ 
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0
 = 1


0
 =  n

 Inverse-Gamma(ν0 / 2, ν0 σ0
2 /2)  with σ0 = 0.025 % 
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Prior

Posterior
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Prior

Posterior

• As ν0 -> 0, the data dominates (as represented by the OLS estimate σOLS) 
 
• As ν0 -> ∞, the prior dominates (as represented by the prior estimate σ0) 

Prior and posterior distributions for σ 

ν0 = n ν0 = 1 

σOLS σ0 σOLS σ0 



Estimate of the calibration curve 
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Calibration curve fβ^(q), point-
wise 95 % credible intervals, and 
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Prior and posterior distribution for 
K-factor for particular flow rate 

Prior distribution 
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Posterior distribution 
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• Estimates of K-factors are equal for all statistical approaches 
 

• Standard uncertainties of K-factors vary depending on the weight 
given to the prior information on the repeatability 

Numerical results and comparison 



Influence of prior information 
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Distributions for fβ(qmin) as constraint relating to previous calibration 
becomes tighter 
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• Estimates of K-factors are different, especially for smallest flow rate 
 

• Standard uncertainties of K-factor at smallest flow rate becomes 
smaller, as prior knowledge ‘actively adds information’ in this case 
 

• Standard uncertainties of K-factors at other flow rates are almost 
identical to the values before 

Numerical results and comparison 
(case: more informative prior knowledge on calibration curve) 



Final remarks 

• Numerical algorithm is quite straightforward and only uses methods similar to 
GUM Supplement 1. 

 

• Treatment does not answer questions about whether the flow meter 
‘conforms to specifications’ about its repeatability and calibration curve 

– By interpreting those ‘specifications’ as prior knowledge, the flow meter is 
forced to conform! 

 

• Use of ‘strict’ constraints leads to posterior distributions that are truncated at 
the boundaries of the constraints 

– Alternative forms of prior distributions, which associate small probabilities 
with ‘infeasible’ calibration curves, might be considered to be more 
realistic but are more difficult to cope with numerically. 
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  Bayesian analysis permits both prior information about the 
flow meter and observed data to be used.  

 
 In contrast, Ordinary Least Squares only treats the extreme 
cases where any of the unknowns (regression parameters β and 
variance of the data σ2) is either completely known or unknown.   
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