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Topic 

• Bayesian analysis applied to conformity assessment of mass-
produced products 

• Incorporating measurement uncertainty (MU) into the 
conformity assessment criterion 
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Another Bayesian analysis: Why? 

• Need to mix two fundamentally different types of information: 

• Sampling distribution of the mass-produced products 

• State-of-knowledge PDF of the measurement error 
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Motivation 

• Electromagnetic Compatibility (EMC) compliance criterion of 
mass-produced products was recently under debate* 

• This triggered a reconsideration of the compliance criterion 

 

4 * The debate did not concern incorporation of MU into the compliance 
criterion 



The CISPR* 80 % / 80 % rule 
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• At least 80 % of the products shall comply with the emission 
limit with a probability of not less than 80 % 

• The 80 % / 80 % rule was introduced via CISPR 
Recommendation 46/1 and 46/2 in 1961 

• Adopted by generic EMC emission standards and several 
product standards 

• Used by market surveillance authorities 

• Protects the consumer from appliances with a too high radio 
interference level 

• Similar statistical tools are more generally applied to the 
quality control of mass-produced products 

*CISPR: International Special Committee on Radio Interference 



Application of the rule 

• Test based on the non-central t-distribution 

• Rationale thoroughly described in TR CISPR 16-4-3:2007 
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The factor k 

• It is assumed that the production being investigated has a 
normal distribution with unknown parameters μ and σ 

• Restate the rule as follows: 

• At least the fraction p1 of the products shall comply with the 
emission limit with a probability of not less than p2 

• If F(t ; v, δ) is the non-central t-CDF with v = N – 1 DoF and 
non-centrality parameter δ and Φ(z) is the normal CDF, then: 
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MU and the 80 % / 80 % rule 

• In EMC the limit L accounts for MU 

• If the MU of the test lab is greater than a given MU reference 
value* then the emission limit is decreased by the difference 
between the test lab MU and the MU reference value 

• Example 1 

• Test lab MU = 4.8 dB 

• MU reference value = 5.4 dB 

• The limit stays 

• Example 2 

• Test lab MU = 5.8 dB 

• MU reference value = 5.4 dB 

• The applicable emission limit is L’ = L – 0.4 dB 8 

* Reference values for the different emission measurement methods 
are calculated and reported in the standard EN 55016-4-2:2011 



The ingredients of our analysis 

• What we observe is 

 

 

• Q ~ N(μ, σ2) is the quality characteristic to be assessed, μ and 
σ are unknown parameters 

• E models an unknown systematic error (the PDF of E is given) 

• Q and E are independent each other 

• An unobservable value qi  corresponds to each observation qEi 

 

 

• qi values are independent each other 

• qEi values are correlated by the unknown systematic error e 
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The recipe – 1st step 

Available 
knowledge 

Bayes 
theorem 

Joint density 
of μ and σ  

10 



The recipe – 2nd and final step 

• Integration of the joint density of μ and σ over the blue 
colored area 

• The value of Lp2 such that the volume is p2 is numerically 
obtained 
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Compliance criterion 

 

 

 

• Same formal expression for the compliance criterion as in the 
case where MU is neglected, except that now: 

• k = kp2 depends on v and p2, and on MU 

• 𝑞𝐸 is the sample mean of the observations 

• sE is the sample standard deviation of the observations 
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Results – E ~𝑁 0,𝑢2   

kp2 
N 

2 3 4 5 6 7 8 9 10 20 50 100 

𝑠𝐸
𝑢

 

∞ 3.42 2.02 1.67 1.51 1.42 1.35 1.30 1.27 1.24 1.10 0.99 0.95 

10 3.43 2.02 1.68 1.52 1.43 1.36 1.31 1.28 1.25 1.11 1.02 0.98 

3 3.46 2.07 1.75 1.60 1.51 1.45 1.41 1.38 1.35 1.24 1.17 1.15 

1 3.71 2.47 2.18 2.04 1.97 1.91 1.88 1.85 1.83 1.75 1.71 1.69 

0.5 4.50 3.28 2.97 2.84 2.76 2.71 2.68 2.66 2.64 2.58 2.54 2.53 

0.3 5.72 4.40 4.07 3.93 3.86 3.81 3.78 3.76 3.74 3.69 3.66 3.66 

0.2 7.28 5.79 5.45 5.31 5.25 5.20 5.18 5.16 5.14 5.09 5.07 5.07 

0.15 8.81 7.19 6.84 6.70 6.64 6.60 6.58 6.56 6.54 6.49 6.47 6.47 

0.1 11.8 9.99 9.63 9.50 9.44 9.40 9.38 9.36 9.34 9.30 9.27 9.27 
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p1 = p2 = 0.8 



Results – E ~𝑅 − 3𝑢, 3𝑢  

kp2 
N 

2 3 4 5 6 7 8 9 10 20 50 100 

𝑠𝐸
𝑢

 

∞ 3.42 2.02 1.67 1.51 1.42 1.35 1.30 1.27 1.24 1.10 0.99 0.95 

10 3.42 2.02 1.68 1.52 1.43 1.36 1.31 1.28 1.25 1.11 1.02 0.98 

3 3.45 2.07 1.75 1.60 1.51 1.46 1.41 1.38 1.36 1.26 1.21 1.20 

1 3.68 2.48 2.23 2.12 2.06 2.02 1.99 1.98 1.96 1.92 1.89 1.89 

0.5 4.40 3.45 3.23 3.13 3.08 3.05 3.03 3.01 3.00 2.96 2.93 2.93 

0.3 5.81 4.87 4.62 4.52 4.47 4.43 4.41 4.40 4.39 4.34 4.32 4.31 

0.2 7.73 6.63 6.36 6.25 6.20 6.17 6.14 6.13 6.12 6.07 6.05 6.05 

0.15 9.62 8.37 8.09 7.98 7.93 7.90 7.88 7.86 7.85 7.80 7.78 7.78 

0.1 13.3 11.9 11.6 11.4 11.4 11.4 11.3 11.3 11.3 11.3 11.2 11.2 
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p1 = p2 = 0.8  



Some details about the analysis 

• Two independent derivations (same results): 

• Qi and E are normal and independent then a multivariate normal 
distribution is considered as the likelihood function 

 

 

 

 

 

• Application of Bayes theorem with use of model prior: more 
slippery* but also more general (Qi and E may be non normal) 
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Summary and conclusion 

• Analytical expressions for the joint density of the parameters 
of a normal mass-produced production were found 

• Correlation among observations due to the systematic 
measurement error is taken into account 

• The usual improper priors were assigned to the parameters 

• In the limit were MU is negligible with respect to the sample 
standard deviation the new results and the consolidated ones 
(non-central t-CDF) are the same 

• The analysis is valid if the non-repeatability of the measuring 
instrumentation is negligible with respect to the variability of 
the production process 
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The “slippery” derivation 
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