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 Long-run success rate and Bayesian intervals 

 

 The three examples 

 

 Considerations 
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Bayes at work 
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Bayesian approach Orthodox approach 

Usefulness of the 
resulting pdf 

Direct (probability of 
measurand values) 

Indirect 
(probability of measured values 
for a supposed measurand) 

Use of the pdf Simple (credible intervals) Convoluted (confidence intervals) 

Prior information Integrated in the scheme Not covered 

Uncertainty Known quantity Uncertain quantity 
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 When only vague prior information is available («X is in the interval [a;b]») 

 

 Bayesian approach requires a clever technical construction of the right 
“objective” prior pdf (objective = non-informative = non-subjective) 

 

 Stein’s Paradox:  
different priors are needed to estimate 𝜇  and 𝜇2 in 𝑁(𝜇, 𝜎2) 
 

 Words from the (objective) Bayesian statistician J. Berger: 
 

 

 
“frequentist notions are valuable in 
the construction of objective Bayesian 
methodology” (frequentist validation) 

Bayesian Analysis (2006)  vol. 1, pp. 385-402 
 

The Case for Objective Bayesian Analysis 
 

J. Berger 
 

Objective priors can vary depending on the goal of the 
analysis for a given model. 
 
Use of constant priors, vague proper priors […] I call such 
analyses pseudo-Bayes.  
 

They do not carry with them any of the 
guarantees of good performance that come 
with (well-studied) objective Bayesian analysis 

LRSR evaluation 
 

(«Think like a Bayesian, 
check like a frequentist») 
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 Pdf are assigned to 𝑋𝑖   
according to rules 
independent on the 
propagation problem 
 

 Equivalent to a Bayesian 
analysis using particular 
prefixed priors 
(Elster, Toman, Forbes, Lira, 
Grientschnig…) 
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 In nonlinear problems the pdf of 𝑌 may have undesirable 
properties  
(Hall, Elster, Toman, Willink, Forbes, …) 

 
 LRSR of coverage intervals (which is NOT the coverage probability) 

can be low 
 
 
 
 
 
 
 

 Different positions: 
◦ Low LRSR demonstrates that the scheme is wrong 
◦ The pdf of Y can be improved with proper Bayesian techniques like MCMC 
◦ Low LRSR is not a problem and must be ignored 
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 Three pair of examples  
(A, B, C) 

 

 In each pair, input quantities 
has the same pdf 

 

 In each pair: 
◦ n.1 yields 𝐿𝑅𝑆𝑅 = 𝑝 (satisfying) 

◦ n.2 yields 𝐿𝑅𝑆𝑅 ≅ 0 (unsatisfying) 
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Effect of dice 

Effect of noise Effect of quantization 
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 Measurement model: quadratic mean 𝑌 = 𝑓 𝑥1, … , 𝑥𝑁 =
1

𝑁
 𝑋𝑖

2𝑁
𝑖=1  

◦ results can be intuitively interpreted 
◦ any other nonlinear model would be good 

 

 Number of input quantities 
◦ 𝑵 = 𝟐𝟓𝟎𝟎, generates BIG differences between examples 
◦ 𝑵 = 𝟏, 𝟐 generates identical (smaller) effects 

 

 Coverage interval 
◦ 95% probability symmetric interval 

 
 Computations 

◦ NPLUnc software (exact Monte Carlo and approximate GUF solution)  
 
http://resource.npl.co.uk/docs/science_technology/scientific_computing/ssfm/documents/s
oftware/NPLUnc.zip  
 

◦ Analytical results are easy to obtain 
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 𝑋1, … , 𝑋𝑁 are totally unknown 
 

 Information:  
 
A1 
◦ 𝑋𝑖 = outcomes of the roll of 𝑁 independent fair dice 
 
A2 
◦ 𝐷𝑖 = outcome of 𝑁 fair dice, values [−2.5, −1.5, −0.5, +0.5, +1.5, +2.5] 
◦ Values 𝑥𝑖 = 𝑋𝑖 + 𝐷𝑖 are given 
 
 

𝑥𝑖 − 2.5 𝑥𝑖 + 2.5 𝑥𝑖 

pdf of 𝑋𝑖 
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 In A1, 𝑥𝑖 = 𝐸[𝑋𝑖] = 3.5, 𝑋𝑖 = 𝑥𝑖 + 𝐷𝑖, with 𝐷𝑖 ∈ [−2.5, −1.5, −0.5, +0.5, +1.5, +2.5] 
 

 In A2, the situation is reversed, 𝑥𝑖 = 𝑋𝑖 + 𝐷𝑖 and 𝑥𝑖 assume different («random») values 
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 Actual experiment: 𝑌 = 15.3152 
 

 The GUM2 interval has 𝐿𝑅𝑆𝑅 = 𝑝 = 95% 

 

 The GUM2 (bayesian) pdf is also a 
frequency pdf 
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 Actual experiment: 𝑌 = 9! 

 

 The GUM2 interval has 𝐿𝑅𝑆𝑅 ≅ 0 
 

 An interval with 𝐿𝑅𝑆𝑅 = 95% is easily 
computed using a “frequentist” approach: it 
is the confidence interval [8.65; 9.60] 
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 𝑋1, … , 𝑋𝑁 are totally unknown 
 

 Information: 

 
A1 

◦ 𝑋𝑖 = 𝑥𝑖 + 𝑁𝑖, with 𝑁𝑖~𝑁(0, 1) i.i.d. 
◦ measurands 𝑋𝑖 are obtained by summing noise to measurements 𝑥𝑖 

 
◦ A2 

◦ 𝑥𝑖 = 𝑋𝑖 + 𝑁𝑖, with 𝑁𝑖~𝑁(0, 1) i.i.d. 
◦ measurements 𝑥𝑖 are obtained by summing noise to measurands 𝑋𝑖 

𝑥𝑖 

pdf of 𝑋𝑖 
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 In B1, 𝑥𝑖 = 𝐸[𝑋𝑖] = 1 (different 𝑥𝑖 can be used) 

 In B2, 𝑥𝑖 assume different («random») values 
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 Actual experiment: 𝑌 = 2.0541 
 

 The GUM2 interval has 𝐿𝑅𝑆𝑅 =
𝑝 = 95% 
 

 The GUM2 (bayesian) pdf is also 
a frequency pdf 
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 Actual experiment: 𝑌 = 1! 
 

 The GUM2 interval has 𝐿𝑅𝑆𝑅 ≅ 0 
 

 An interval with 𝐿𝑅𝑆𝑅 = 95% is easily 
computed using a “frequentist” 
approach: it is the confidence interval 
[0.94; 1.17] 
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 𝑋1, … , 𝑋𝑁 are totally unknown 

 

 Information: 

 
The same for C1 and C2 

◦ 𝑥𝑖 = 𝑟𝑜𝑢𝑛𝑑(𝑋𝑖) (quantization with step 𝑄 = 1) 

 

𝑥𝑖 

pdf of 𝑋𝑖 

𝑥𝑖-0.5 𝑥𝑖+0.5 
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 In C1, the quantizer input is a “special” signal  
◦ It spans uniformly an integer number of quantization step 

 
 In C2, the quantizer input is a much more generic signal 

◦ It has a span that satisfies Quantization Theorem II (bandlimited distribution) 
 
(Widrow and Kollar, «Quantization noise», Cambridge University Press, 2008) 
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 Actual experiment: 𝑌 = 2.0581 
 

 The GUM2 interval has 𝐿𝑅𝑆𝑅 =
𝑝 = 95% 
 

 The GUM2 (bayesian) pdf is also a 
frequency pdf 0 500 1000 1500 2000 2500
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 Actual experiment: 𝑌 = 1.867 
 

 The GUM2 interval has 𝐿𝑅𝑆𝑅 = 0 
 

 An interval with 𝐿𝑅𝑆𝑅 = 95% is easily 
computed using a “frequentist” 
approach: it is the confidence interval 
[1.843; 1.906] 
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Is success rate important in real life? 
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 Additive noise of known power 𝑝𝑛 (𝑝𝑛 = 𝑄
2/12 for quantization) 

 Measured signal of (measured) power 𝑝𝑥 

 Unknown signal of unknown power 𝑃𝑋  

 

 GUM2 estimates 𝑃𝑋 as 
◦ 𝑃𝑋 = 𝑝𝑥 + 𝑝𝑁 

 This is OK in the (rare) case of noise uncorrelated with 
the output (examples A1, B1, C1) 

 

 What usually happens is that noise is uncorrelated with 
the input (examples A2, B2, C2)  
◦ 𝑝𝑥 = 𝑃𝑋 + 𝑝𝑛 ⇒ 𝑃𝑋 = 𝑝𝑥 − 𝑝𝑛 
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 Actual experiment: 𝑌 = 1.998 
 The GUM2 interval has 𝐿𝑅𝑆𝑅 = 0 

 
 An interval with 𝐿𝑅𝑆𝑅 = 95% is 

easily computed using a 
“frequentist” approach 
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 A good Bayesian does not require 
𝐿𝑅𝑆𝑅 = 𝑝 
 

 But a good Bayesian does not accept 
𝐿𝑅𝑆𝑅 = 0  
 
(remember the words of Berger; see 
also J. M. Bernardo) 
 

 When 𝐿𝑅𝑆𝑅 = 0, the prior pdf must 
be changed, in a problem-
dependent way («true» Bayesianism) 
 

 Yes, it is a problem 

J. Statistics Planning and Inference (1997)      vol. 65 
 

Noninformative priors do not exist: A discussion 
 

J. M. Bernardo 
 
 

An important part of the discussion on methods for 
deriving non-subjective priors is based on the 
analysis of the statistical properties of the posteriors 
they produce in specific, “test-case” examples  
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 If the dice are not fair, and 
we get LRSR = 0, the 
problem is not in the 
methodology 

 

 But if the dice are fair and 
we get LRSR = 0, the 
problem is in the 
methodology 
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Examples A (dice), B (noise) show that: 

 
 When measurands 𝑋𝑖 are obtained summing random numbers 𝐸𝑖 to fixed measurements 𝑥𝑖 

 
⇒ the Bayesian pdf of 𝒀 is good (btw it is also the frequency pdf of 𝑌 in repeated experiments) 

 

 When measurements 𝑥𝑖 are obtained summing random numbers 𝐸𝑖 to fixed measurands 𝑋𝑖 

 
⇒ the Bayesian pdf of 𝒀 is bad 

 
 

 
 

measurement 
𝑥𝑖 

measurand 
𝑋𝑖 

𝐸𝑖 

GUM2 OK  

measurement 
𝑥𝑖 

measurand 
𝑋𝑖 

𝐸𝑖 

GUM2 KO  
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In examples C1, C2 we do not have a «summation» mechanism 
 
 We have different statistics for the quantization error  

𝐸𝑖 = 𝑟𝑜𝑢𝑛𝑑 𝑥𝑖 − 𝑋𝑖 = 𝑥𝑖 − 𝑋𝑖 
 

 𝐸𝑖 , 𝑥𝑖  are independent ⇒ the Bayesian pdf of 𝒀 is good (C1, «special» 
input) and is also the frequency pdf of 𝑌 in repeated experiments 
 

 𝐸𝑖 , 𝑥𝑖  are not independent ⇒ the Bayesian pdf of 𝒀 is bad (C1, «generic» 
input: 𝐸𝑖 , 𝑋𝑖 independent) 
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 Add to GUM2/S1 a statement: 
« » 

Long-run success rate of coverage 
intervals in repeated measurements 

 
The long-run success rate of a coverage 
interval in repeated measurements do not 
coincide, in general, with the coverage 
probability 𝑝.  

 

(LRSR may become arbitrarily low. Details 
may be added…) 
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 Guidance to implement «true» 
Bayesian analysis 
◦ JCGM 108 

 

 Guidance to assess LRSR of 
intervals / determine intervals 
with given LRSR 
◦ It can be done easily by Monte 

Carlo simulations 
◦ LRSR can be assessed for any 

interval, however obtained (also 
frequentist methods) 

◦ The statistics of 𝐸𝑖 = 𝑥𝑖 − 𝑋𝑖 is of 
essential importance here 
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 Success rate is of practical 
interest, and intervals with 
assured LRSR have a market 

 

 People use frequentist, 
Bayesian, and mixed 
approaches – all sort of tools 

 

 Providing guidance to 
everybody is a lot of work, 
but it can be worth it 
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Thank 
you! 
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