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Motivation

Motivation

I Task: combine information from multiple studies on same quantity

I Applications
I Interlaboratory studies and key comparisons

I Adjustment of fundamental constants

I Meta-analysis of clinical studies

I Challenges:
I inconsistent data
I presence of correlations, . . .

Combining information from disparate sources is a fundamental activity in both scientific research

and policy decision making

The process of learning is one of combining information: we are constantly called upon to update

our beliefs in the light of new evidence, which may come in various forms

How does this process work in practice?

— National Research Council (1992)

Combining information:

Statistical issues and opportunities for research
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Examples — Data

Newtonian Constant of Gravitation G

I Inconsistency of data illustrates current

metrological challenges

I Ideally, resolve discrepancies by

identifying metrological reasons

I Need for consensus value:

statistical (adjustment) problem

P. J. Mohr, B. N. Taylor and D. B. Newell (2012)

CODATA Recommended Values of the Fundamental

Physical Constants: 2010 Reviews of Modern Physics 84,

1527-1605.
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Examples — Data

Planck Constant h

I Inconsistency of data illustrates current

metrological challenges

I Ideally, resolve discrepancies by

identifying metrological reasons

I Need for consensus value:

statistical (adjustment) problem

P. J. Mohr, B. N. Taylor and D. B. Newell (2012)

CODATA Recommended Values of the Fundamental

Physical Constants: 2010 Reviews of Modern Physics 84,

1527-1605.
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Problem & Solutions

Problem

I Values measured by different laboratories are often more dispersed than should be

expected in light of their associated uncertainties

I Over-dispersion suggests that there may be uncertain components that are yet

unrecognized in the corresponding, laboratory-specific uncertainty budgets

Dark uncertainty — Thompson & Ellison (2011)

M. Thompson and S. L. R. Ellison (2011). Dark uncertainty. Accreditation and Quality Assurance

16, 483-487.
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Problem & Solutions

Solutions

I Downweigh or discard measurement results that are markedly discordant with bulk

of the others

M. G. Cox (2002) The evaluation of key comparison data Metrologia 39, 589-595.

M. G. Cox (2007) The evaluation of key comparison data: determining the largest consistent

subset Metrologia 44, 187-200.

G. Ratel (2006) Median and weighted median as estimators for the key comparison reference value

(KCRV) Metrologia 43, S244-S248.

A. L. Rukhin and A. Possolo (2011) Laplace random effects models for interlaboratory studies

Computational Statistics and Data Analysis 55, 1815-1827.
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Problem & Solutions

Solutions

I Downweigh or discard measurement results that are markedly discordant with bulk

of the others

I Expand stated uncertainties by common multiplicative factor sufficiently to achieve

mutual consistency (Birge Ratio)

I Explicitly acknowledge presence of yet unidentified, laboratory-specific uncertainty

components, and take them into account when estimating measurand and

evaluating associated uncertainty

B. Toman and A. Possolo (2009) Laboratory effects models for interlaboratory comparisons

Accreditation and Quality Assurance 14, 553-563.
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I Downweigh or discard measurement results that are markedly discordant with bulk

of the others

I Expand stated uncertainties by common multiplicative factor sufficiently to achieve

mutual consistency (Birge Ratio)

I Explicitly acknowledge presence of yet unidentified, laboratory-specific uncertainty

components, and take them into account when estimating measurand and

evaluating associated uncertainty

I Bayesian model averaging has been suggested for the estimation of particular

laboratory effects models

C. Elster and B. Toman (2010) Analysis of key comparisons: estimating laboratories’ biases by a

fixed effects model using Bayesian model averaging Metrologia 47, 113-119.
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Conventional Method

Conventional Method

Measurement results from n laboratories: (x1, u1), . . . , (xn, un)

I Weighted Mean

µ̂W =

∑n
i=1

xi
u2
i∑n

i=1
1
u2
i

, u(µ̂W) =
(∑n

i=1
1
u2
i

)− 1
2

I Birge Ratio RB =

√
χ2

obs
n−1

, χ2
obs =

∑n
i=1

(xi−µ̂W)2

u2
i

µ̂B = µ̂W, u(µ̂B) = RBu(µ̂W)

I Fails to recognize uncertainty associated with RB

I Assumes that same multiplicative inflation factor should be applied to all of u1, . . . , un
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Statistical Models

Statistical Models

Location-Scale Model (LSM)

Xi = µ+ σBεi , with εi ∼ N(0, u2
i ) for i = 1, . . . , n

Random Effects Model (REM)

Xi = µ+ λi + εi , with λi ∼ N(0, σ2
λ), εi ∼ N(0, u2

i ) for i = 1, . . . , n

I λ1, . . . λn denote random effects independent of ε1, . . . , εn

I There may be correlations between λ1, . . . , λn or between ε1, . . . , εn

I σB and σλ determine Dark Uncertainty

LSM amplifies lab-specific uncertainties by common factor σB > 1

REM introduces additive laboratory effects, with common variance σ2
λ
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Statistical Models

Model Fitting

Both LSM and REM may be fitted to data using anyone of several different methods for

estimating µ and σB (for LSM), and µ and σλ (for REM)

Location-scale model

I Weighted mean for µ and method of moments for σB

R. T. Birge 1932 The calculation of errors by the method of the least squares. Physical Reviev 40,

207-227.

I Bayesian estimates for µ and σB

O. Bodnar and C. Elster (2014) On the adjustment of inconsistent data using the Birge ratio.

Metrologia 51, 516-521.

B. Toman, J. Fischer and C. Elster (2012) Alternative analyses of measurements of the Planck

constant. Metrologia 49, 567-571.
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Statistical Models

Bayesian Improvement of Birge Ratio Procedure

I Ratio of standard uncertainties obtained by

the modified Birge adjustment and the

Birge adjustment as a function of the

number n of adjusted values

I O. Bodnar and C. Elster (2014) On the

adjustment of inconsistent data using the Birge

ratio. Metrologia 51, 516-521.

B. Toman, J. Fischer and C. Elster (2012)

Alternative analyses of measurements of the

Planck constant. Metrologia 49, 567-571.
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Statistical Models

Random effects model

I First estimate σλ, then estimate µ by weighted mean with weights proportional to
{1/(σ̂2

λ + u2
i )}

Viechtbauer (2010) Conducting meta-analyses in R with the metafor package. Journal of Statistical

Software 36 (3), 1-48

A. L. Rukhin (2013) Estimating heterogeneity variance in meta-analysis. Journal of the Royal

Statistical Society Series B 75, 451-469.

I (Restricted) Maximum Likelihood

A. L. Rukhin and M. G. Vangel (1998) Estimation of a common mean and weighted means

statistics. Journal of the American Statistical Association 93, 303-308.

S. R Searle, G. Casella and C. E. McCulloch (2006) Variance Components. John Wiley & Sons,

New Jersey.

B. Toman and A. Possolo (2009) Laboratory effects models for interlaboratory comparisons.

Accreditation and Quality Assurance 14, 553-563.

I Bayesian methods

A. Gelman (2006) Prior distributions for variance parameters in hierarchical models (Comment on

article by Browne and Draper). Bayesian Analysis 1, 515-534.

O. Bodnar, A. Link and C. Elster (2015) Objective Bayesian inference for a generalized marginal

random effects model. To appear in Bayesian Analysis.
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Statistical Models

Model Fitting

BAYESIAN REFERENCE ANALYSIS for RANDOM EFFECTS MODEL

I The reference prior is most uninformative in a certain sense

J. Berger and J. M. Bernardo (1992a) Ordered group reference priors with application to the

multinomial problem. Biometrika 79, 25-37.

O. Bodnar and C. Elster (2014) Analytical derivation of the reference prior by sequential

maximization of Shannon’s mutual information in the multi-group parameter case. Journal of

Statistical Planning and Inference 147, 106-116.

I Analytic expression for the reference prior available

I Calculation of posterior distribution by simple 1-d quadrature, no MCMC required

O. Bodnar, A. Link and C. Elster (2015) Objective Bayesian inference for a generalized marginal

random effects model. Bayesian Analysis, online available.
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Simulation Study

Robustness, True Model vs. Fitted Model

Location-scale model, n=8 Random effects model, n=8

Location-scale model, n=20 Random effects model, n=20
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Simulation Study

Model Robustness

I Accuracy of coverage probability largely maintained when REM is fitted to data

consistent with LSM, but seriously degraded when LSM is fitted to data consistent

with REM

I REM achieves greater accuracy of coverage probability than LSM when the {εi} or

the {λi} are correlated, and when both the {εi} and the {λi} have rescaled

Student’s t5 distributions
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Examples — Results

Newtonian Constant of Gravitation G

I LSM — Conventional estimate and

uncertainty evaluation based on Birge

Ratio

I REM — Bayesian estimate and

uncertainty evaluation based on

reference prior
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Examples — Results

Planck Constant h

I LSM — Conventional estimate and

uncertainty evaluation based on Birge

Ratio

I REM — Bayesian estimate and

uncertainty evaluation based on

reference prior
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Summary & Conclusions

Summary & Conclusions (1/2)

I Unrecognized uncertainty components often present in interlaboratory or multiple

method studies (Dark Uncertainty)

I The standard uncertainty, based on the Birge Ratio, associated with the

conventional weighted mean estimate of the consensus value, tends to be too small

I Bayesian reference analysis leads to an improvement of the Birge Ratio Method

I Random effects model (REM) is more robust than location-scale model (LSM)

I Fitting procedure influential: Bayesian reference analysis appears to work well

I Bayesian reference analysis in conjunction with REM assigns uncertainties to

consensus values for G and h that are substantially different from CODATA’s

O. Bodnar, C. Elster, J. Fischer, A. Possolo, B. Toman Evaluation of uncertainty June 15, 2015 17 / 18



Summary & Conclusions

Summary & Conclusions (1/2)

I Unrecognized uncertainty components often present in interlaboratory or multiple

method studies (Dark Uncertainty)

I The standard uncertainty, based on the Birge Ratio, associated with the

conventional weighted mean estimate of the consensus value, tends to be too small

I Bayesian reference analysis leads to an improvement of the Birge Ratio Method

I Random effects model (REM) is more robust than location-scale model (LSM)

I Fitting procedure influential: Bayesian reference analysis appears to work well

I Bayesian reference analysis in conjunction with REM assigns uncertainties to

consensus values for G and h that are substantially different from CODATA’s

O. Bodnar, C. Elster, J. Fischer, A. Possolo, B. Toman Evaluation of uncertainty June 15, 2015 17 / 18



Summary & Conclusions

Summary & Conclusions (1/2)

I Unrecognized uncertainty components often present in interlaboratory or multiple

method studies (Dark Uncertainty)

I The standard uncertainty, based on the Birge Ratio, associated with the

conventional weighted mean estimate of the consensus value, tends to be too small

I Bayesian reference analysis leads to an improvement of the Birge Ratio Method

I Random effects model (REM) is more robust than location-scale model (LSM)

I Fitting procedure influential: Bayesian reference analysis appears to work well

I Bayesian reference analysis in conjunction with REM assigns uncertainties to

consensus values for G and h that are substantially different from CODATA’s

O. Bodnar, C. Elster, J. Fischer, A. Possolo, B. Toman Evaluation of uncertainty June 15, 2015 17 / 18



Summary & Conclusions

Summary & Conclusions (1/2)

I Unrecognized uncertainty components often present in interlaboratory or multiple

method studies (Dark Uncertainty)

I The standard uncertainty, based on the Birge Ratio, associated with the

conventional weighted mean estimate of the consensus value, tends to be too small

I Bayesian reference analysis leads to an improvement of the Birge Ratio Method

I Random effects model (REM) is more robust than location-scale model (LSM)

I Fitting procedure influential: Bayesian reference analysis appears to work well

I Bayesian reference analysis in conjunction with REM assigns uncertainties to

consensus values for G and h that are substantially different from CODATA’s

O. Bodnar, C. Elster, J. Fischer, A. Possolo, B. Toman Evaluation of uncertainty June 15, 2015 17 / 18



Summary & Conclusions

Summary & Conclusions (1/2)

I Unrecognized uncertainty components often present in interlaboratory or multiple

method studies (Dark Uncertainty)

I The standard uncertainty, based on the Birge Ratio, associated with the

conventional weighted mean estimate of the consensus value, tends to be too small

I Bayesian reference analysis leads to an improvement of the Birge Ratio Method

I Random effects model (REM) is more robust than location-scale model (LSM)

I Fitting procedure influential: Bayesian reference analysis appears to work well

I Bayesian reference analysis in conjunction with REM assigns uncertainties to

consensus values for G and h that are substantially different from CODATA’s

O. Bodnar, C. Elster, J. Fischer, A. Possolo, B. Toman Evaluation of uncertainty June 15, 2015 17 / 18



Summary & Conclusions

Summary & Conclusions (1/2)

I Unrecognized uncertainty components often present in interlaboratory or multiple

method studies (Dark Uncertainty)

I The standard uncertainty, based on the Birge Ratio, associated with the

conventional weighted mean estimate of the consensus value, tends to be too small

I Bayesian reference analysis leads to an improvement of the Birge Ratio Method

I Random effects model (REM) is more robust than location-scale model (LSM)

I Fitting procedure influential: Bayesian reference analysis appears to work well

I Bayesian reference analysis in conjunction with REM assigns uncertainties to

consensus values for G and h that are substantially different from CODATA’s

O. Bodnar, C. Elster, J. Fischer, A. Possolo, B. Toman Evaluation of uncertainty June 15, 2015 17 / 18



Summary & Conclusions

Summary & Conclusions (2/2)

I We recommend the use of random effects statistical models to derive consensus

values from measurement results obtained by different methods or laboratories

I Ideally, application of statistical techniques and interpretation of corresponding

results should be done in collaboration between metrologists and statisticians
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