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challenging measurement applications: a case
study in micro-Newton level force measurement
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= What is dynamic measurement?
* Definition
* Features and properties of a dynamic
measurement system
* What's the problem?
* How to deal with it
= Case study: micro-Newton thrust measurement
* Requirements
* Instrument design
« Testing
= Summary of observations and issues



What is dynamic measurement? NPLE
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= Definition:

A measurement is considered dynamic if the
relationship between the measurand and the
sensor output is frequency dependent.

= The term dynamic does not apply to all time-varying
signals

= Not necessarily limited to rapid rates of change in

measurand. e.g. seismometers often have a low-
frequency cut-off.



Features and properties

NPLE
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What'’s the problem? NPLE]

We want our sensor output signal to represent the
measurand as closely as possible.

The frequency response of the sensor has introduced
a systematic effect.

GUM says we must compensate all known
systematic effects and associate uncertainties with
these compensations.

This requires a calibration process

* Determine relationship between measurand and
output signal

« Establish correction factor(s)/coefficient(s)
- Estimate uncertainty associated with corrections



Solution

gensor

Measurand ——

H(s)

Bode Plot
10- =30
0 L =3 0
—
o 10 —-25
= —-50
&2 =20
3 : --75
% -30 -—Transfer function —-100
= 40— 2500 \ 18
50| s +50s +2500 -130
B 1 11 ik 150
100m 1 10 100

Frequency /Hz

of 352U

NPL

National Physical Laboratory

‘Eilter Deconvolved
H(s)

Bode Plot
60 - I R L =180
Transfer function
50 -— / 150
e 40-—| s 4505 +2500 125
= 2500 _
30— 100 7
£ -75 4
& 2 ] -50 ®
= 10
-25
__-—a--—'_'-'_;.fj
0 B =5 0
-10- 1=-30
100m 1 10 100

Frequency /Hz



Inverse filter design NPL

Use system ID techniques to determine the transfer function of the
sensor, H(s).

* Physical model
«  “Black box” model
« “Grey box” model

For Black box or Grey box model, perform experiment to determine
model parameters

Invert the transfer function to obtain the inverse filter, H(s).
But,
* Inverse filter may be unstable, will amplify noise
* low-pass filter
* Uncertainties and errors associated with the model
- Validate the model



Low-pass filter NPL

= Design of filter is an issue:

- Cut-off frequency

* Filter order
= Does it matter?

- Trade-off between error reduction and uncertainty
= Guidance needed



System ID/Model validation tools NPLE
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= Easy to use software tools available, e.g.
- LabVIEW control design and simulation toolkit
- MATLAB system identification toolkit

= Transfer function parameter estimates provided, but
not always uncertainty estimates

« We need uncertainty estimates
 How do we get them?
= Model validation tools available
« More guidance on use to these tools is needed

= These tools cover the engineering aspects but the
requirements for metrology are lacking



NPLE

Propagate uncertainties

= Errors in the model
* Incomplete i.e. un-modelled effects
= Uncertainties in the model/filter parameters

= How do we propagate these uncertainties (frequency
domain) through to the deconvolved signal (time
domain)?
* Monte Carlo?
- Some other technique?

* HELP!
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A subtlety: Correlation

* |nverse filter is a finite impulse response (FIR) or
Infinite Impulse response (lIR) filter. So all output data
samples are inherently correlated with all previous
samples.

* GUM says we need to take correlations into account.
- How?

= e.g. Deriving an uncertainty associated with a time
averaged output signal needs to take this correlation

Into account otherwise uncertainty estimates could be
wrong!

= Note: the above applies whenever filtered data is
averaged.



Summary NPLE]

= System ID to determine sensor transfer function
« Uncertainties in model & model parameters

= Derive and apply inverse filter and accompanying LPF
« Uncertainty in filter parameters
* Inherent correlation

= Propagating uncertainties through to time domain is an
ISsue.

= When calibrating a dynamic sensor, how/what do we
report?

* |nverse filter coefficients and uncertainties?
* Include correlation coefficients?

* On paper or electronically?

« Guidance on use of calibration data?
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NPLE

Micro-thrusters

= Thrusters operating in the range 0.1 uN to 500 mN
= Used by spacecraft, for example, for
- fine attitude control
- drag compensation
* station keeping
+ formation flying
= Thrust generated by accelerating ions or gas/liquid
 Electric Propulsion
« Cold gas



Micro-thruster performance NPLE
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= LISA Pathfinder requires thruster performance:
= Range 0.3 uN to 150 uN
= Resolution 0.3 uN
= Noise below 0.1 yN/vHz between 10-2 Hz and 10 Hz
1 uN/AHz between 10-2 Hz and 102 Hz

= Traceable measurements with rigorously evaluated
uncertainties are required to verify thruster performance



NPL/ESA micro-newton thrust
balance requirements
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= Primarily for cold-gas thrusters

O uN to 500 uN thrust range

* 0 Hzto 10 Hz measurement bandwidth

= Noise floor below 1 uN/VHz

Traceable to international standards

= Rigorous uncertainty evaluation, target 1 uN (k = 2)



NPL/ESA micro-newton thrust NPLE
balance requirements ==

= Current focus is on ‘static’ thrust measurement
= Next goal is to measure thruster dynamics...
= .. and thrust noise.



Thrust balance design NPL

MBA

(Measurement balance assembly)

.......

TCA

(tilt compensation assembly)

Thruster
Dummy load

Force actuator Pendulum

Displacement
sensor (inside)

Pictures courtesy of ESA



Thrust balance principles NPL

T ,(X> \ , Displacement l
= Pendulum mechanism .1 L - J
= Null-displacement, force Feodback | o0
feedback control Foce :
= QOvercomes non-linearity in
mechanism
= Sensitivity determined by
force actuator (in steady- ﬂ
state) _ ¢ feature
= Traceabillity through force N f’“, 5 gn-at
actuator calibration j ::O\J K uW
= Test input for system ID 3-6"“ \JSG;_ npe

and uncertainty verification



Thrust balance principles

I

NPLE

National Physical Laboratory

;@_,

Pendulum

»| Displacement

PID

= Pendulum mechanism

= Null-displacement, force
feedback control

Force

» Sounds just like a seismometer!
= Sensitive to vibration and
tilt
= Use a ‘dummy’ matched

pendulum to compensate
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Thrust balance principles NPL
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Dynamic compensation: NPL
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= Derive grey box model from physics ¥ : 3
= For each pendulum (MBA and TCA): ) il iy y L g
«  Perform system ID test
-« Fit grey box model to data to obtain —
unknown parameters of grey box model
- Perform validation test on both % e
pendulum models 1o g
- Design inverse filter for each pendulum = = = & %ﬂ%&
= Perform thrust measurements A
* Record thrust/vibration data and apply e
inverse filters i L
= Subtract deconvolved TCA signal from WMWW
deconvolved MBA signal to compensate for .. H P
vibration e . gL
= — e

ouis




Dynamic compensation:

1. System model

= Grey box model
Some parameters knows (green)
Some unknown or known within

limits (red)
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Dynamic compensation:
2. System ID

Apply known stimulus via the test input
Record stimulus and response (output)
Fit grey box model to data.

But currently, no uncertainties given.

MBA Sys ID Data
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Dynamic compensation: NPLE
3_ MOdeI Verlflca‘tlon National Physical Laboratory

= Apply known stimulus via the test
= Record stimulus and response

= Compute prediction error
= Autocorrelation of prediction error
= Cross correlation between prediction 3
error and stimulus Tos
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Dynamic compensation:

= Vibration compensation
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Dynamic compensation: NPL
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* TF compensation

Thrust Data
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‘Static’ thrust measurement NPL ,,

Thrust Data
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* [nterleaved simulated and real thrust steps
(deconvolved)

= Need to account for residual noise (after vibration
compensation)
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Thrust measurement NPLE
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= Fit parallel lines through data when thrust is OFF and
ON.
= Standard least-squares analysis gives us the

magnitude of the thrust step (separation of parallel
lines) and an uncertainty.
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Thrust measurement
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= Simulated thrust steps repeated 50 times.
* Plotted as errors (deviation from known thrust).
= Uncertainty shown by error bars plotted at k = 2.

= Calculated uncertainty is not consistent with
observed variation! Why?
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Thrust measurement NPL

= Calculated uncertainty is not consistent with
observed variation! Why?

= The standard statistical analysis assumes noise is:
*  White (broadband)
* Random
- Stationary
* Un-correlated

= Remember the inverse filter? This correlates the
data.

= Use empirical (AR) model to compensate for
correlation



o
Ry
i)

Thrust measurement
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= Calculated uncertainties are more consistent with
observed variation

= But this is an empirical solution based on our current
best guess of the cause of inconsistency

= More work needed...



Next steps

Thruster dynamics
Thrust Noise

Thrust Data
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Summary & Observations NPL

= GUM does not explicitly cover dynamic measurement

= Dynamic measurement/calibration is a complex
process

= Relies on several assumptions that need to be
validated, LTI, model, etc

= potential pit-falls, correlation

= Software tools exist, e.g. for system ID, but cover
engineering aspects not metrology

= Scientific literature on the subject is scarce and
needs to be adapted for a wider audience



