

Determination of KCRV, u(KCRV) & DoE

Final Proposal by KCWG to CCRI(II)

Stefaan Pommé John Keightley

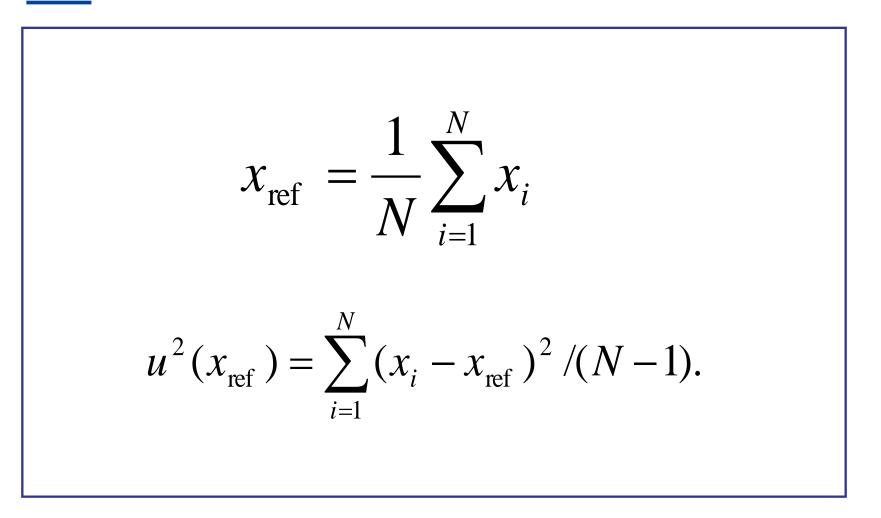
CCRI(II) Meeting, BIPM, 14-16 May 2013

Estimators for mean

arithmetic weighted Mandel-Paule Power Moderated Mean

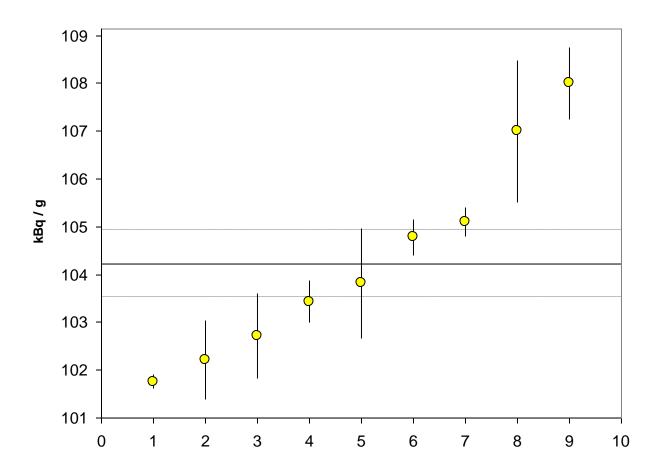
Arithmetic mean

European Commission



Good: ignore wrong unc

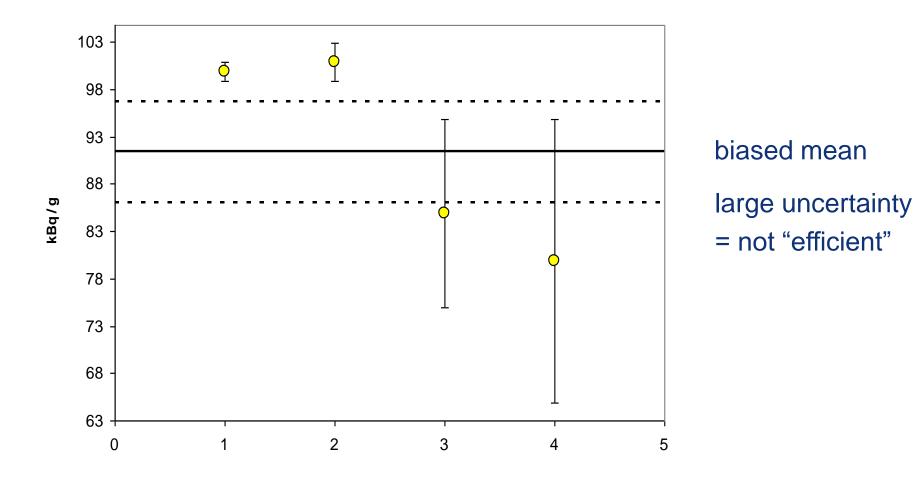
European Commission



4

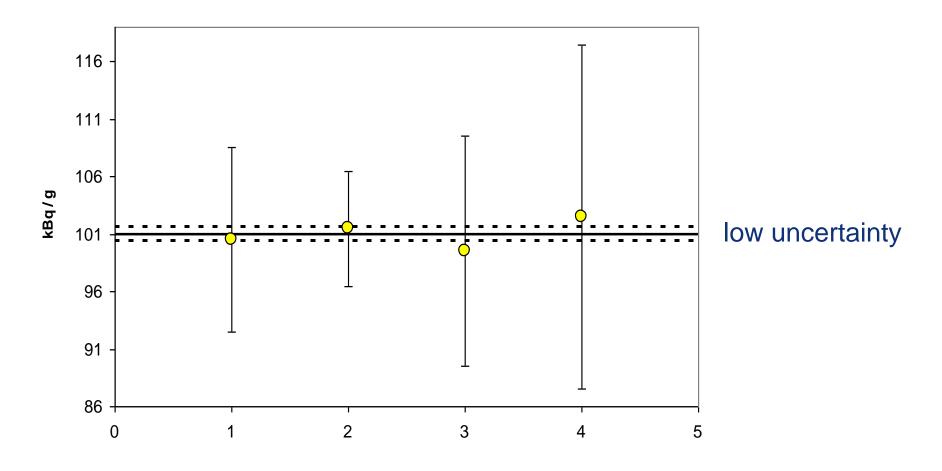
Bad: inefficient

European Commission



Bad: low sample variance

European Commission



Remedy against low unc

Calculate uncertainty from maximum of

- propagated sum of stated uncertainties
- sample variance

$$u(\overline{x}) = \max\left(\frac{1}{N}\sqrt{\sum_{i=1}^{N}u_i^2}, \sqrt{\sum_{i=1}^{N}\frac{(x_i - \overline{x})^2}{N(N-1)}}\right)$$

Arithmetic mean

Best solution is close to *arithmetic mean* if

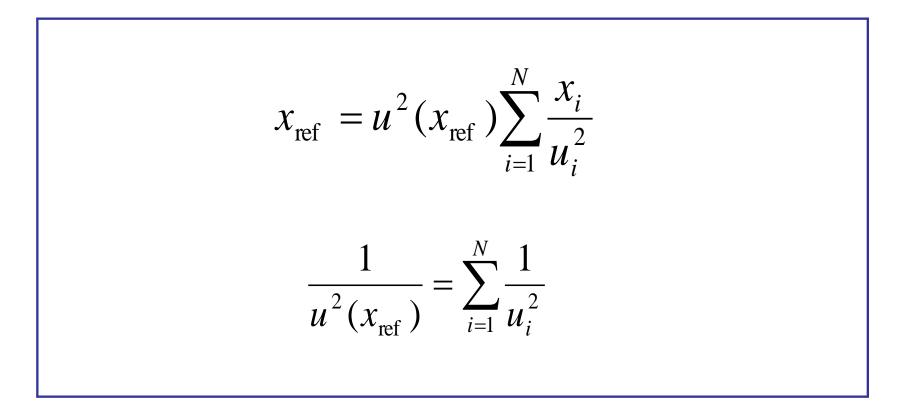
- measurement uncertainty contains no useful information
- magnitude error on uncertainty is >2x larger than magnitude due to metrological reasons

= the "best" with "bad uncertainty data"

= inefficient with "consistent data"

Weighted mean

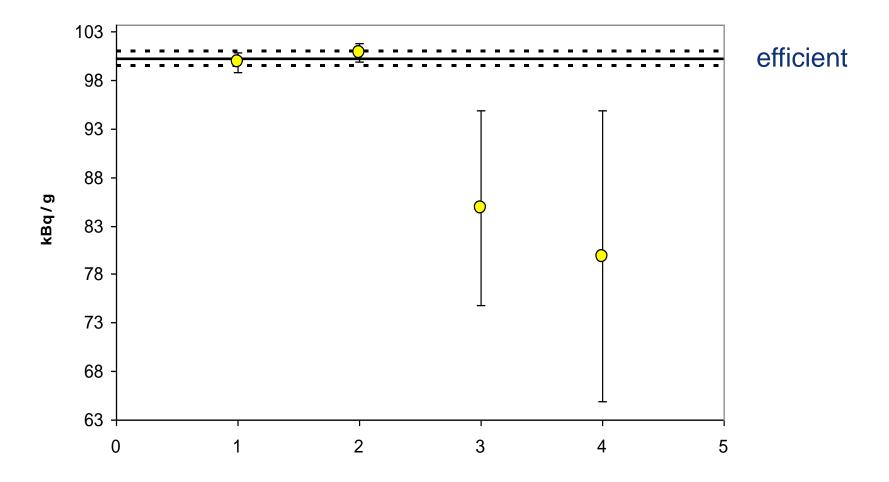
European Commission



statistical weight = reciprocal variance associated with x_i

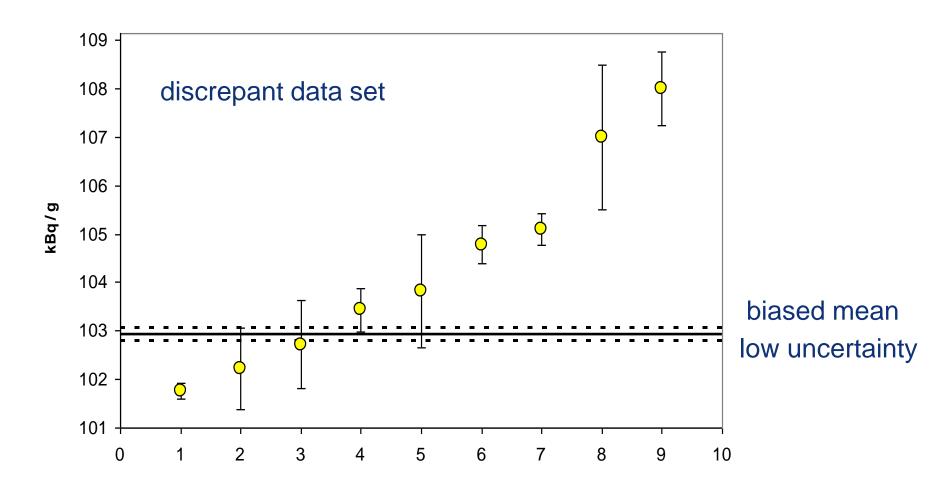
Good: efficient

European Commission



Bad: sensitive to error

European Commission

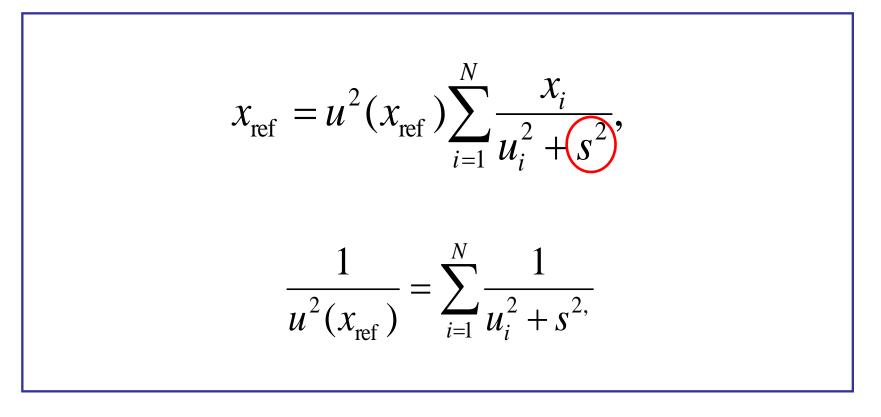


Weighted mean

- measurement uncertainties are correct
- 'value' and 'uncertainty' outliers are excluded

- = the "best" with "perfect data"
- = sensitive to "low uncertainty" outliers

European Commission

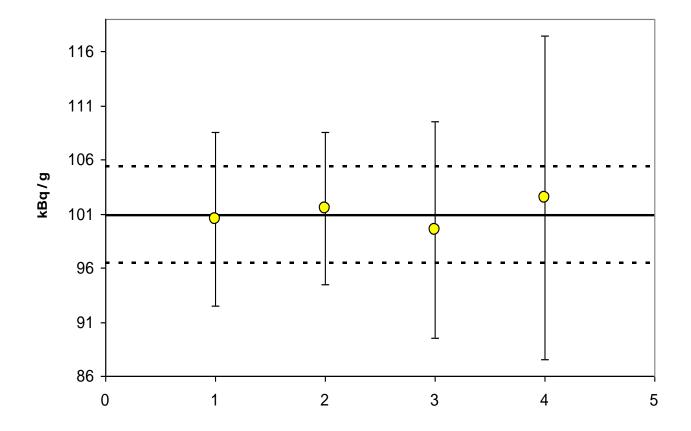


 s^2 is artificially added "interlaboratory" variance to make reduced chi = 1

$$\tilde{\chi}_{\text{obs}} = \sqrt{\frac{1}{N-1} \sum_{i=1}^{N} \frac{(x_i - x_{\text{ref}})^2}{u_i^2}}.$$

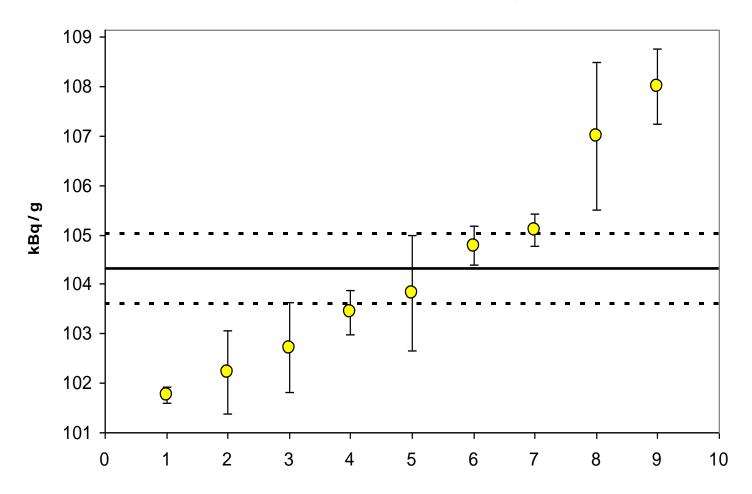
European Commission

= weighted mean for a consistent data set



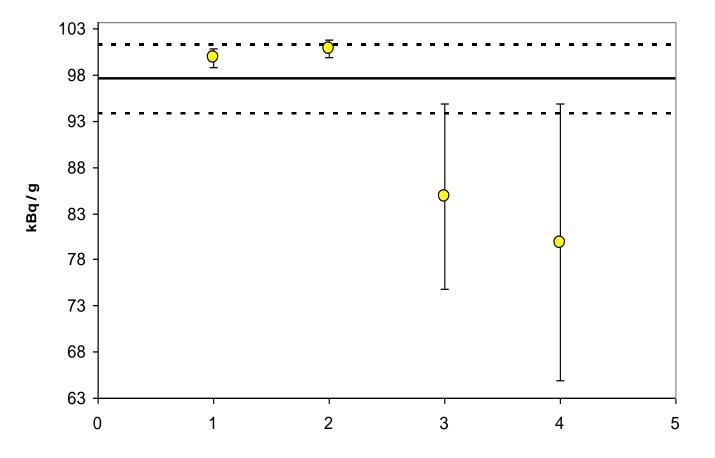
European Commission

≈ arithmetic mean for an extremely discrepant data set



European Commission

= intermediate between arithmetic and weighted mean for a slightly discrepant data set



Mandel-Paule mean

Best solution is close to Mandel-Paule mean if

- measurement uncertainties are informative
- 'value' and 'uncertainty' outliers are symmetric

= one of the "best" with "imperfect data" if no tendency to underestimate uncertainty

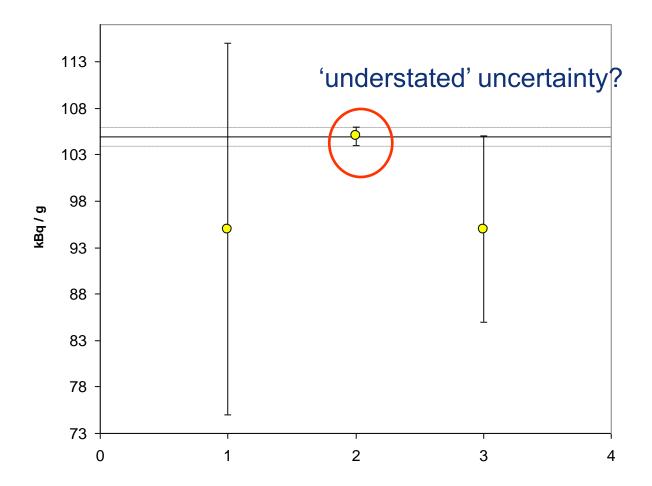
Power Moderated Mean - PMM

European Commission

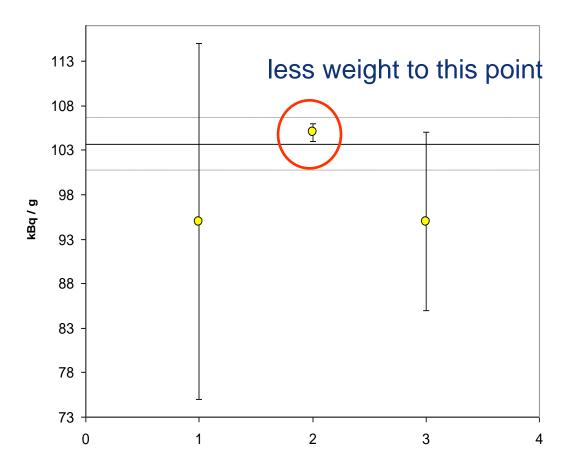
$$x_{\text{ref}} = \sum_{i=1}^{N} w_i x_i$$
$$w_i = u^2 (x_{\text{ref}}) \left[\left(\sqrt{u_i^2 + s^2} \right)^{\alpha} S^{2-\alpha} \right]^{-1}$$
$$S = \sqrt{N \cdot \max(u^2(\bar{x}), u^2(x_{\text{mp}}))}$$

S is a typical uncertainty per datum (max arithmetic or M-P unc) $0<\alpha<2$ = power reflects level of trust in uncertainties

= Mandel-Paule mean



= closer to arithmetic mean



Choice of power $\boldsymbol{\alpha}$

European Commission

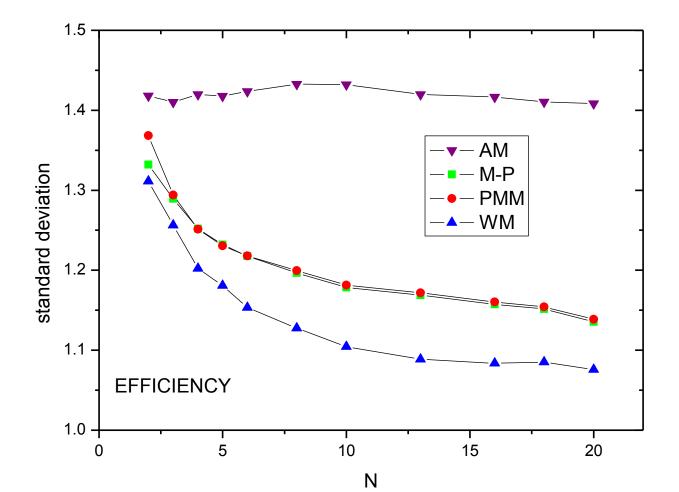
reliability of uncertainties
uninformative uncertainties
(arithmetic mean)
uncertainty variation due to error at least twice the variation due to metrological reasons
(arithmetic mean)
informative uncertainties with a tendency of being rather underestimated than overestimated
(intermediately weighted mean)
informative uncertainties with a modest error; no specific trend of underestimation
(Mandel-Paule mean)
accurately known uncertainties, consistent data
(weighted mean)

Test of Estimators by Computer Simulation

arithmetic weighted Mandel-Paule Power Moderated Mean

Efficiency for discrepant data

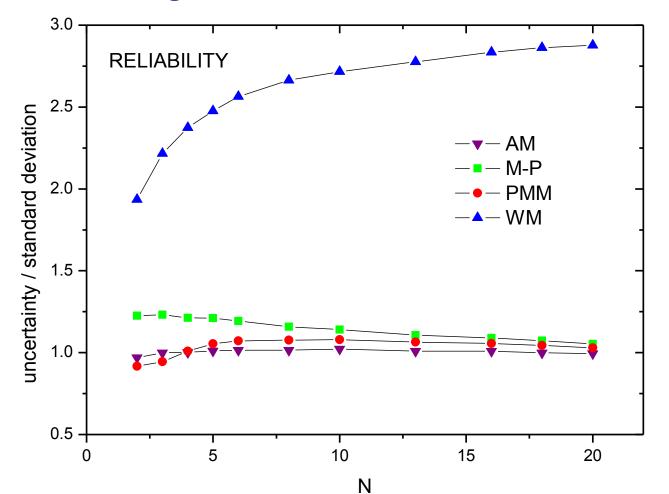
arithmetic < PMM, M-P < weighted



23

Reliability of uncertainty

weighted << M-P < PMM < arithmetic



Commissior

Power Moderated Mean

Best solution is close to <u>PMM</u> if

- measurement uncertainties are informative
- uncertainties tend to be understated
- data seem consistent but are not
- = one of the "very best" with "imperfect data"
 = more realistic uncertainty than Mandel-Paule mean
 = more adjustable to quality of data than M-P mean

Outlier identification

generally applicable method

Outlier identification

CCRI(II) is the final arbiter regarding correcting or excluding any data from the calculation of the KCRV.Statistical tools may be used to indicate data that are extreme.

- = a way to protect the KCRV against erroneous data, data with understated uncertainty, extreme data asymmetrically disposed to the KRCV
- = a way to lower the uncertainty on the KCRV

Outlier identification

$$|\mathbf{e}_{i}| > ku(\mathbf{e}_{i}), \quad \mathbf{e}_{i} = x_{i} - x_{\text{ref}}$$

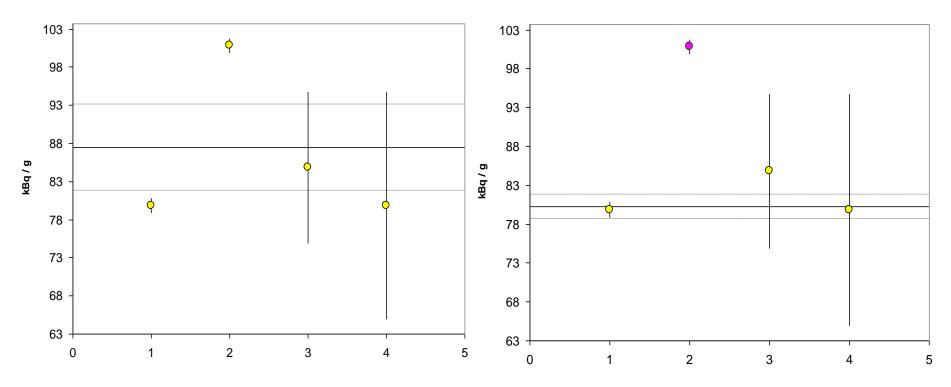
$$u^{2}(e_{i}) = u^{2}(x_{\text{ref}})(\frac{1}{w_{i}} - 1) \qquad x_{\text{i}} \text{ included in mean}$$

$$u^{2}(e_{i}) = u^{2}(x_{\text{ref}})(\frac{1}{w_{i}} + 1) \qquad x_{\text{i}} \text{ excluded from mean}$$

- valid for any type of mean, using normalised w_i
- default k = 2.5

Outlier or not?

Both options are possible within the method. \rightarrow outlier rejection should be based on technical grounds



Degree of equivalence

generally applicable method

Degree of equivalence

European Commission

$$d_i = x_i - x_{ref}, \quad U(d_i) = 2u(d_i)$$
$$u^2(d_i) = (1 - 2w_i)u_i^2 + u^2(x_{ref}) \quad x_i \text{ included in mean}$$
$$u^2(d_i) = u_i^2 + u^2(x_{ref}) \quad x_i \text{ excluded from mean}$$

- valid for any type of mean

Conclusions

 The Power Moderated Mean keeps a fine balance between <u>efficiency</u> and <u>robustness</u>, while providing also a <u>reliable uncertainty</u>.
 <u>Outlier identification</u> and <u>degrees of equivalence</u> are readily obtained.

